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Recent Successes In Reinforcement Learning (RL)
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Precision Medicine Recommender Systems Autonomous Driving
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Contextual Bandits
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Reasonable Policies May Use Sensitive Data
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Reasonable Policies May Use Sensitive Data

9

 
Name 
Age 

Weight 
Health Habits 

Physical Activity Levels 
Health Issues 

s(1)
0

⋮

The policy has access to information that users may consider sensitive or 
private



Neural Networks Can Memorize Personal Information From One Example
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Hartley et al. 2023



We Must Incorporate Privacy-Preserving Mechanisms Into RL
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We require a mathematically rigorous framework that provides statistical guarantees for our 
(possibly randomized) mechanism:

Definition (Approximate Differential Privacy). A mechanism  is -DP if for all neighboring datasets  that 
differ by one record and for all event  in the output range 

ℳ (ε, δ) 𝒰, 𝒰′ 

E

ℙ (ℳ(𝒰) ∈ E) ≤ eεℙ (ℳ(𝒰′ ) ∈ E) + δ

Remark: This is a relaxation of -DP as in many settings, 
achieving -DP is nearly impossible or comes at high utility 

cost

ε
ε



Differential Privacy (DP)
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There are a few issues with -DP(ε, δ)
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There are a few issues with -DP(ε, δ)
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There are a few issues with -DP(ε, δ)
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There are a few issues with -DP(ε, δ)
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There are a few issues with -DP(ε, δ)
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There are a few issues with -DP(ε, δ)
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There are a few issues with -DP(ε, δ)
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There are a few issues with -DP(ε, δ)
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There are a few issues with -DP(ε, δ)
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There are a few issues with -DP(ε, δ)
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We need a further relaxation of DP …
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One which works nicely with contextual bandit problems on a per-user level but does not 
sacrifice privacy on a per-decision or per-context level, ensuring that individual contexts 
do not overly influence the learned policy:

Definition (Approximate Joint Differential Privacy). A mechanism  is -JDP if for any , any user 
sequences  differing on the -user and any  

ℳ (ε, δ) k ∈ [K]
𝒰, 𝒰′ k E ⊂ 𝒜(K−1)H

ℙ (ℳ−k(𝒰) ∈ E) ≤ eεℙ (ℳ−k(𝒰′ ) ∈ E)



Joint Differential Privacy (JDP)
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In this talk:
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Can we develop an efficient -JDP algorithm for 
sequential decision-making problems with linear parametric 
representations, and provide a novel algorithm with provably 

efficient guarantees for privacy-preserving exploration?  

(ε, δ)



Outline
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1. Problem Setup + Previous Work and Motivation

2. Can we do better?

3. Our regret bound



Episodic Time-Inhomogeneous Finite-Horizon MDPs
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Episodic Time-Inhomogeneous Finite-Horizon MDPs

29

Policy: state to action
πk

h(s) → a



Episodic Time-Inhomogeneous Finite-Horizon MDPs

30

Policy: state to action
πk

h(s) → a

Reward & Next State
rk
h(s, a), s′ ∼ Pk

h ( ⋅ ∣ s, a)



Episodic Time-Inhomogeneous Finite-Horizon MDPs

31

Policy: state to action
πk

h(s) → a

Reward & Next State
rk
h(s, a), s′ ∼ Pk

h ( ⋅ ∣ s, a)

 TimesH



Episodic Time-Inhomogeneous Finite-Horizon MDPs

32

Policy: state to action
πk

h(s) → a

Reward & Next State
rk
h(s, a), s′ ∼ Pk

h ( ⋅ ∣ s, a)

, 
play  times
∀k ∈ [K]

H



Episodic Time-Inhomogeneous Finite-Horizon MDPs
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Episodic Time-Inhomogeneous Finite-Horizon MDPs
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Policy: state to action
πk

h(s) → a

Reward & Next State
rk
h(s, a), s′ ∼ Pk

h ( ⋅ ∣ s, a)

, 
play  times
∀k ∈ [K]

H

Finite-Horizon MDP: ℳ = {𝒮, 𝒜, {rh}H
h=1

, {Ph}H
h=1

, H} H < ∞

τk = {sk
h, ak

h}H
h=1



Formal RL Problem Setting
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Setting: Episodic inhomogeneous finite horizon MDP  where  are the states and 
actions, respectively,  is the length of each episode,  are the time-

dependent transition probability and deterministic reward function.  is measurable and possibly uncountable, and  
is finite. In this setting, the policy is time-dependent and we denote this 

ℳ = {𝒮, 𝒜, {ℙh}h, {rh}h, H} 𝒮, 𝒜
H ∈ ℤ ℙh : 𝒮 × 𝒜 → Δ(𝒮), rh : 𝒮 × 𝒜 → [0,1]

𝒮 𝒜
π = {π1, ⋯, πH}

Regret(K) =
K

∑
k=1

[V*1 (sk
1) − Vπk

1 (sk
1)]



Linear MDP
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ϕ(s, a)·(s, a)

rh ∈ ℝSA Φ ∈ ℝSA×d θh ∈ ℝd

(s, a)

=

∃θh, ϕ⋆ : ∀s, a, h, rh(s, a) = ϕ⋆(s, a)⊤θh



Linear MDP
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ϕ(s, a)·
s′ 

Ph ∈ ℝSA×S Φ ∈ ℝSA×d

μh ∈ ℝS×d

(s, a)

=

∃μh, ϕ⋆ : ∀s, a, h, s′ , Ph(s′ ∣ s, a) = ϕ⋆(s, a)⊤μh(s′ )

(s, a)
s′ 



LSVI-UCB
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LSVI-UCB Algorithm [Jin et al. 2020]
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LSVI-UCB Algorithm [Jin et al. 2020]



LSVI-UCB
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LSVI-UCB Algorithm [Jin et al. 2020]

Think of  as one-hot vector, then  
is capturing something similar to visitation 
counts which uses trajectory information 
with possibly private data

ϕ(s, a) Λh



LSVI-UCB

41

LSVI-UCB Algorithm [Jin et al. 2020]



LSVI-UCB
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LSVI-UCB Algorithm [Jin et al. 2020]

These are parameter estimates for the feature 
regressors which allow us to calculate the Q-
function due to Linear MDPs. Again, this can leak 
information about trajectories taken by the policy 



Differential Privacy Techniques
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Theorem (Gaussian Mechanism).   where   

with   is -DP

MG(x, f( ⋅ ), ε, δ) = f(x) + (Y1, …, Yk) Yi ∼ 𝒩 (0,σ2)
σ2 =

Δ2( f ) 2 log (2/δ)
ε

(ε, δ)

Theorem (Billboard Lemma). If you have a mechanism  that is -DP, then any function  that 
depends on user i’s data and the output of the mechanism satisfies -JDP

ℳDP (ε, δ) fi : 𝒰i × ℛ → ℛi
(ε, δ)



Previous Work
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[Luyo et al. 2021]. Fix any privacy level . For any , their algorithm is -JDP and, with 
probability at least , its regret is bounded as follows: 

ε, δ ∈ (0,1) p ∈ (0,1) (ε, δ)
1 − p

R(K) = Õ( d3H4K + H11/5d8/5K3/5/ε2/5)

Techniques Used 

Λ̃h = Λh + 𝒩 (0, 𝒪 ( 1
ε

BHlog (1/δ)))
ũh = uh + 𝒩 (0, 𝒪 ( 1

ε
H2Blog (1/δ)))

Static Batching to reduce the number of policy switches to 𝒪(poly(K))



Previous Work
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[Ngo et al. 2022]. Fix any privacy level . For any , their algorithm is -JDP and, with 
probability at least , its regret is bounded as follows: 

ε, δ ∈ (0,1) p ∈ (0,1) (ε, δ)
1 − p

R(K) = Õ( d3H4K + H3d5/4K1/2/ε1/2)

Same techniques as previous work but instead of a static batching 
schedule, they use Adaptive Batching to reduce the number of policy 

switches to 𝒪(log(K))

Techniques Used 



LSVI-UCB
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LSVI-UCB Algorithm [Jin et al. 2020]

Achieves regret R(K) = �̃� (H2 d3K)



Motivating Work: LSVI-UCB+
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[Hu et al. 2022]. Set . Then, with probability at least , the regret of LSVI- 

UCB+ is upper bounded by 

λ = 1/(H2 d) 1 − 10δ

R(K) = �̃� (d H3K)
Techniques Used 

Instead of solving a ridge regression problem, we solve a weighted ridge 
regression problem using estimated weights from data. This allows us to use 
a self-normalized martingale argument using Azuma-Bernstein rather than 

Azuma-Hoeffding to get a bonus that improves our regret



Motivating Work: JDP In Tabular MDPs
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[Qiao and Wang. 2023]. For any privacy budget , failure probability , and any privatizer where 
the private counts are close to the true counts with high probability, with probability at least , their algorithm 

is -JDP and achieves regret upper bounded by: 

 

ε > 0 0 < β < 1
1 − β

(ε, δ)

R(K) = �̃� ( H3SAK + S2AH3/ε)

Techniques Used 
In previous work, since we would use a Hoeffding-bound that only depends 
on the counts, it is sufficient to privatize the counts loosely using Gaussian 

noise with sufficient variance component. However, to use a Bernstein-
bound, we need to carefully privatize the counts to ensure that we can 

upper bound the variance term in a Bernstein-bound 



Can we design a -JDP algorithm that is near minimax optimal for non-private learning and 
improves the cost of privacy using more refined privatization and concentration techniques? 

(ε, δ)
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R(K) = Õ( d3H4K + H3d5/4K1/2/ε1/2)



Can we design a -JDP algorithm that is near minimax optimal for non-private learning and 
improves the cost of privacy using more refined privatization and concentration techniques? 

(ε, δ)
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R(K) = Õ( d3H4K + H3d5/4K1/2/ε1/2)

Non-private 
learning regret: 

We can do better 
using LSVI-UCB+



Can we design a -JDP algorithm that is near minimax optimal for non-private learning and 
improves the cost of privacy using more refined privatization and concentration techniques? 

(ε, δ)
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R(K) = Õ( d3H4K + H3d5/4K1/2/ε1/2)

Non-private 
learning regret: 

We can do better 
using LSVI-UCB+

Cost of privacy: can 
we improve this 

𝒪 (poly (HdK)/ε)



Our Work
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Fix any privacy level . For any , their algorithm is -JDP and, with 
probability at least , its regret is bounded as follows: 

ε, δ ∈ (0,1) p ∈ (0,1) (ε, δ)
1 − p

R(K) = Õ (d H3K +
H19/8d15/8K3/4

ε )

Compared to Luyo et al. (2021) and Ngo et al. (2022), this regret bound 
achieves tighter dependence on  for the non-private terms and 

tighter dependence on  for the private terms
H, d
H, ε



Proof Sketch
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1. Identify terms in the non-private algorithm that are used for estimating


2. Privatize them by (cleverly) adding noise to the terms


3. Prove the utility of the privatized terms (how close are they to the non-
private terms)


4. Use the private terms in place of the non-private terms and use your 
standard LSVI-UCB techniques (i.e. self-normalized martingale 
concentrations, uniform covering arguments, elliptical potentials, and 
utility of the privatized terms)



Questions?
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