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Reasonable Policies May Use Sensitive Data
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Reasonable Policies May Use Sensitive Data

 
Name 
Age 

Health Habits 
Physical Activity 

Levels 
Health Issues 

s1
0

⋮

The policy has access to information that users 
may consider sensitive or private 
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Neural Networks Can Memorize Personal Information From One Example

Diagram Credit: Neural networks Memorize Personal Information 
From One Sample by Hartley et al. 2023
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We Must Incorporate Privacy-Preserving Mechanisms Into RL

We require a mathematically rigorous framework that provides statistical guarantees for our 
(possibly randomized) mechanism 

Definition (Approximate Differential Privacy). A mechanism  is -DP if for all neighboring datasets  that 
differ by one record and for all events   in the output range


ℳ (ε, δ) 𝒰, 𝒰′￼

ℰ

ℙ (ℳ (𝒰) ∈ ℰ) ≤ eεℙ (ℳ (𝒰′￼) ∈ ℰ) + δ

Remark: This is a relaxation of -DP as in many settings, 
achieving -DP is near impossible or comes at high utility 

cost.

ε
ε
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Differential Privacy (DP)

Database 𝒟1

Some other person’s data

+

Database 𝒟2

=

Mechanism ℳ

Mechanism ℳ

ℳ (𝒟1)

ℳ (𝒟2)

Mechanism  is 
differentially private if …

ℳ  that differ by at-
most one record

∀𝒟1, 𝒟2

≈

 are 
indistinguishable

ℳ (𝒟1), ℳ (𝒟2)
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There are a few issues with -DP (ε, δ)

User u1
Agent π

Trusted Individual of the 
Central Agency

I trust this agent with 
my sensitive raw data 

𝒟u1
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There are a few issues with -DP (ε, δ)

-DP 
Mechanism 

(ε, δ)
ℳ

User u1
Agent π

Trusted Individual of the 
Central Agency

I trust this agent with 
my sensitive raw data 

𝒟u1
Query Q (𝒟u1)
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There are a few issues with -DP (ε, δ)

-DP 
Mechanism 

(ε, δ)
ℳ

User u1
Agent π

Trusted Individual of the 
Central Agency

I trust this agent with 
my sensitive raw data 

𝒟u1
Query Q (𝒟u1)

Noisy Response

ℳ (Q (𝒟u1))
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There are a few issues with -DP (ε, δ)

-DP 
Mechanism 

(ε, δ)
ℳ

User u1
Agent π

Trusted Individual of the 
Central Agency

I trust this agent with 
my sensitive raw data 

𝒟u1
Query Q (𝒟u1)

Noisy Response

ℳ (Q (𝒟u1))
Agent  recommends π

a ∼ π ( ⋅ ∣ ℳ (Q (𝒟u1)))
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There are a few issues with -DP (ε, δ)

-DP 
Mechanism 

(ε, δ)
ℳ

User u1
Agent π

Trusted Individual of the 
Central Agency

I trust this agent with 
my new sensitive raw 

data 𝒟′￼u1
Query Q (𝒟′￼u1)

Noisy Response

ℳ (Q (𝒟′￼u1))
Agent  recommends π

a ∼ π ( ⋅ ∣ ℳ (Q (𝒟′￼u1)))
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There are a few issues with -DP (ε, δ)

-DP 
Mechanism 

(ε, δ)
ℳ

User u1
Agent π

Trusted Individual of the 
Central Agency

I trust this agent with 
my new sensitive raw 

data 𝒟′￼u1
Query Q (𝒟′￼u1)

Noisy Response

ℳ (Q (𝒟′￼u1))
Agent  recommends π

a ∼ π ( ⋅ ∣ ℳ (Q (𝒟′￼u1)))

This is the same exact action recommended with the 
old data!
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There are a few issues with -DP (ε, δ)

-DP 
Mechanism 

(ε, δ)
ℳ

User u1
Agent π

Trusted Individual of the 
Central Agency

Query Q (𝒟′￼u1)

Noisy Response

ℳ (Q (𝒟′￼u1))
Agent  recommends π

a ∼ π ( ⋅ ∣ ℳ (Q (𝒟′￼u1)))

My recommendations didn’t 
change even though I 

changed my data! 
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There are a few issues with -DP (ε, δ)

-DP 
Mechanism 

(ε, δ)
ℳ

User u1
Agent π

Trusted Individual of the 
Central Agency

Query Q (𝒟′￼u1)

Noisy Response

ℳ (Q (𝒟′￼u1))
Agent  recommends π

a ∼ π ( ⋅ ∣ ℳ (Q (𝒟′￼u1)))

Due to the -DP 
mechanism , any change in 
the dataset including your own 
data, cannot change the output 

too much! 

(ε, δ)
ℳ
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There are a few issues with -DP (ε, δ)

-DP 
Mechanism 

(ε, δ)
ℳ

User u2
Agent π

Trusted Individual of the 
Central Agency

I trust this agent with 
my sensitive raw data 

𝒟u2
Query Q (𝒟u2)

Noisy Response

ℳ (Q (𝒟u2))
Agent  recommends π

a ∼ π ( ⋅ ∣ ℳ (Q (𝒟u2)))



19

There are a few issues with -DP (ε, δ)

-DP 
Mechanism 

(ε, δ)
ℳ

User u2
Agent π

Trusted Individual of the 
Central Agency

I trust this agent with 
my sensitive raw data 

𝒟u2
Query Q (𝒟u2)

Noisy Response

ℳ (Q (𝒟u2))
Agent  recommends π

a ∼ π ( ⋅ ∣ ℳ (Q (𝒟u2)))

This is the same exact action recommended to the 
other user!
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There are a few issues with -DP (ε, δ)

-DP 
Mechanism 

(ε, δ)
ℳ

User u2
Agent π

Trusted Individual of the 
Central Agency

Query Q (𝒟u2)

Noisy Response

ℳ (Q (𝒟u2))
Agent  recommends π

a ∼ π ( ⋅ ∣ ℳ (Q (𝒟u2)))

Why are my 
recommendations the same 
as ? We are completely 

different people!
u1
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There are a few issues with -DP (ε, δ)

-DP 
Mechanism 

(ε, δ)
ℳ

User u2
Agent π

Trusted Individual of the 
Central Agency

Query Q (𝒟u2)

Noisy Response

ℳ (Q (𝒟u2))
Agent  recommends π

a ∼ π ( ⋅ ∣ ℳ (Q (𝒟u2)))

Giving vastly different 
recommendations between 

users would violate the 
guarantees of the -DP 

mechanism 
(ε, δ)
ℳ
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We need a further relaxation of DP …
One that works nicely with contextual bandit problems on a per-user level but does not 
sacrifice privacy on a per-decision or per-context level 

Definition (Approximate Joint Differential Privacy). A mechanism  is -JDP if for any , any user 
sequences  differing on the k-user and any   


ℳ (ε, δ) k ∈ [K]
𝒰, 𝒰′￼ ℰ ⊂ 𝒜(K−1)H

ℙ (ℳ−k (𝒰) ∈ ℰ) ≤ eεℙ (ℳ−k (𝒰′￼) ∈ ℰ) + δ

Remark: JDP allows for better utility than standard DP in 
some contexts since it permits individual outputs to 
depend more heavily on the individual’s own data
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Joint Differential Privacy (JDP)

Database 𝒟1 Mechanism ℳ

Mechanism ℳ

ℳ−1 (𝒟1)

ℳ−1 (𝒟′￼1)

Mechanism  is joint 
differentially private if …

ℳ  where only the data only 
differs by at most party one’s data
∀𝒟1, 𝒟′￼1

≈

 are 
indistinguishable

ℳ−1 (𝒟1), ℳ−1 (𝒟′￼1)

Some change to party 1’s data

+

Database 𝒟′￼1

=
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In this talk:
Can we develop an efficient -JDP algorithm for sequential 

decision-making problems with linear parametric representations, 
and provide a novel algorithm with provably efficient guarantees for 

privacy-preserving exploration?

(ε, δ)



25

Outline:
1. Problem Setup & Previous Work and Motivation

2. Can we do better?

3. Our regret bound with proof sketch
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Episodic Time-Inhomogeneous Finite-Horizon MDPs
Policy: state to action 

πk
h(s) → a

Reward & Next State 
rk
h(s, a), s′￼ ∼ Pk

h ( ⋅ ∣ s, a)

 times H
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Episodic Time-Inhomogeneous Finite-Horizon MDPs
Policy: state to action 

πk
h(s) → a

Reward & Next State 
rk
h(s, a), s′￼ ∼ Pk

h ( ⋅ ∣ s, a)

, 
play  times
∀k ∈ [K]

H
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Episodic Time-Inhomogeneous Finite-Horizon MDPs
Policy: state to action 

πk
h(s) → a

Reward & Next State 
rk
h(s, a), s′￼ ∼ Pk

h ( ⋅ ∣ s, a)

, 
play  times
∀k ∈ [K]

H

τk = {sk
h, ak

h}H
h=1
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Episodic Time-Inhomogeneous Finite-Horizon MDPs
Policy: state to action 

πk
h(s) → a

Reward & Next State 
rk
h(s, a), s′￼ ∼ Pk

h ( ⋅ ∣ s, a)

, 
play  times
∀k ∈ [K]

H

τk = {sk
h, ak

h}H
h=1

Finite-Horizon MDP: ℳ = {𝒮, 𝒜, {rh}H
h=1

, {𝒫h}H
h

, H}, H < ∞
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Formal Reinforcement Learning Problem Setting

Let  be an episodic inhomogeneous finite-horizon Markov Decision Process 

(MDP) where where  are the states and actions, respectively, and  is the length of each episode. We call 
 the state-transition probability and  the reward function.

ℳ = {𝒮, 𝒜, {rh}H
h=1

, {𝒫h}H
h

, H}
𝒮, 𝒜 H ∈ ℤ

𝒫h : 𝒮 × 𝒜 → Δ (𝒮) rh : 𝒮 × 𝒜 → ℝ
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Let  be an episodic inhomogeneous finite-horizon Markov Decision Process 

(MDP) where where  are the states and actions, respectively, and  is the length of each episode. We call 
 the state-transition probability and  the reward function.

ℳ = {𝒮, 𝒜, {rh}H
h=1

, {𝒫h}H
h

, H}
𝒮, 𝒜 H ∈ ℤ

𝒫h : 𝒮 × 𝒜 → Δ (𝒮) rh : 𝒮 × 𝒜 → ℝ

Vπ
h (s) = 𝔼 [

H

∑
t=h

rt(st, at) ∣ sh = s, at ∼ πt(st)]

Qπ
h (s, a) = 𝔼 [

H

∑
t=h

r(st, at) ∣ sh = s, ah = a, at ∼ πt(st)]

Value Function (State-value)

Q-function (Action-value)

Formal Reinforcement Learning Problem Setting



Value Function (State-value)

Q-function (Action-value)

Let  be an episodic inhomogeneous finite-horizon Markov Decision Process 

(MDP) where where  are the states and actions, respectively, and  is the length of each episode. We 
call  the state-transition probability and  the reward function.

ℳ = {𝒮, 𝒜, {rh}H
h=1

, {𝒫h}H
h

, H}
𝒮, 𝒜 H ∈ ℤ

𝒫h : 𝒮 × 𝒜 → Δ (𝒮) rh : 𝒮 × 𝒜 → ℝ
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Formal Reinforcement Learning Problem Setting

Vπ
h (s) = 𝔼 [

H

∑
t=h

rt(st, at) ∣ sh = s, at ∼ πt(st)]

Qπ
h (s, a) = 𝔼 [

H

∑
t=h

rt(st, at) ∣ sh = s, ah = a, at ∼ πt(st)]

Useful Identities For Later (Bellman Equations)

Qπ(s, a) = 𝔼 [
H

∑
h=0

r(sh, ah) ∣ s0 = s, a0 = a, ah ∼ π( ⋅ ∣ sh)]
= r(s0, a0) + ∑

(s′￼,a′￼)∈𝒮×𝒜

𝒫(s′￼ ∣ s0, a0)π(a′￼ ∣ s′￼)r(s′￼, a′￼)

= r(s0, a0) + 𝔼s′￼∼𝒫(⋅∣s0,a0)V
π(s′￼)

V*(s) = max
π∈Π

Vπ(s) = max
a∈𝒜

Q* (s, a)
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Formal Reinforcement Learning Problem Setting

Let  be an episodic inhomogeneous finite-horizon Markov Decision Process 

(MDP) where where  are the states and actions, respectively, and  is the length of each episode. We call 
 the state-transition probability and  the reward function.

ℳ = {𝒮, 𝒜, {rh}H
h=1

, {𝒫h}H
h

, H}
𝒮, 𝒜 H ∈ ℤ

𝒫h : 𝒮 × 𝒜 → Δ (𝒮) rh : 𝒮 × 𝒜 → ℝ

ℛ (K) =
K

∑
k=1

[V*1 (sk
1) − Vπk

1 (sk
1)] Regret
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Φ ∈ ℝSA×drh ∈ ℝSA

Linear MDP

θh ∈ ℝd

=
(s, a) (s, a)

ϕ(s, a)

∃θh, ϕ : ∀s, a, rh(s, a) = θ⊤
h ϕ(s, a)

Diagram Credit: Wen Sun

https://wensun.github.io/
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Linear MDP

=

rh ∈ ℝSA Φ ∈ ℝSA×d θh ∈ ℝd

(s, a) (s, a)
ϕ(s, a)

∃θh, ϕ : ∀s, a, rh(s, a) = θ⊤
h ϕ(s, a)

Diagram Credit: Wen Sun

These quantities 
are know

https://wensun.github.io/
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Linear MDP

Φ ∈ ℝSA×d𝒫h ∈ ℝSA×S

μh ∈ ℝS×d

(s, a)(s, a)

=

s′￼

s′￼

∃μh, ϕ : ∀s, a, h, s′￼, 𝒫h(s′￼ ∣ s, a) = μh (s′￼)⊤ ϕ(s, a)

Diagram Credit: Wen Sun

https://wensun.github.io/
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Linear MDP

(s, a) (s, a)

=

Φ ∈ ℝSA×d

μh ∈ ℝS×d

𝒫h ∈ ℝSA×S

s′￼

s′￼

∃μh, ϕ : ∀s, a, h, s′￼, 𝒫h(s′￼ ∣ s, a) = μh (s′￼)⊤ ϕ(s, a)

Diagram Credit: Wen Sun

This is unknown

https://wensun.github.io/
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Linear MDP  Action-Value function is linear⟹

Qh(s, a) = rh(s, a) + 𝔼s′￼∼𝒫h( ⋅ ∣ s, a)Vh+1 (s′￼)

= θ⊤
h ϕ(s, a) + 𝒫h (s, a)⊤ Vh+1

= θ⊤
h ϕ(s, a) + (μhVh+1)⊤ ϕ(s, a)

= (θh + μhVh+1)⊤ ϕ(s, a)

= w⊤
h ϕ(s, a)
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Linear MDP  Action-Value function is linear⟹

Qh(s, a) = rh(s, a) + 𝔼s′￼∼𝒫h( ⋅ ∣ s, a)Vh+1 (s′￼)

= θ⊤
h ϕ(s, a) + 𝒫h (s, a)⊤ Vh+1

= θ⊤
h ϕ(s, a) + (μhVh+1)⊤ ϕ(s, a)

= (θh + μhVh+1)⊤ ϕ(s, a)

= w⊤
h ϕ(s, a)

If we learn this, 
we can estimate 
Q and thus the 
optimal policy!
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Learning The Transition Dynamics With Ridge Regression

At each time step , we try to solveh

ŵh = argmin
w

K

∑
i=1

(w⊤ϕ (s(i)
h , a(i)

h ) − y(i)
h )

2

+ λ | |w | |2
2

With  and the target labels being:λ > 0

y(i)
h = r(i)

h + max
a′￼∈𝒜

Qh+1 (s(i)
h+1, a′￼)
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Learning The Transition Dynamics With Ridge Regression

From the solution of ridge regression, we find that

wk
h = Λ−1

h

k−1

∑
i=1

ϕ (si
h, ai

h) (rh (si
h, ai

h) + max
a′￼∈𝒜

Qh (si
h, a′￼))

where Λh =
k−1

∑
i=1

ϕ (si
h, ai

h) ϕ (si
h, ai

h)⊤ + λI
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LSVI-UCB

Diagram Credit: Provably Efficient Reinforcement Learning with Linear 
Function Approximation by Jin et al. 2020
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LSVI-UCB

Diagram Credit: Provably Efficient Reinforcement Learning with Linear 
Function Approximation by Jin et al. 2020



44

LSVI-UCB Bonus
The agent is learning from limited data. Like a regression confidence interval, we want to hedge 
against uncertainty in our estimate of . For any new , the uncertainty in prediction is 
proportional to

ŵh (s, a)

β | |ϕ (s, a) | |Λ−1
h

= β ϕ (s, a)⊤ Λ−1
h ϕ (s, a)

where β = dH d log ( dKH
δ )
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LSVI-UCB Bonus
The agent is learning from limited data. Like a regression confidence interval, we want to hedge 
against uncertainty in our estimate of . For any new , the uncertainty in prediction is 
proportional to

ŵh (s, a)

β | |ϕ (s, a) | |Λ−1
h

= β ϕ (s, a)⊤ Λ−1
h ϕ (s, a)

where β = dH d log ( dKH
δ )

Intuition: Another way to think about this is that this is a carefully curated bonus given to our 
agent that promotes exploration by taking actions that are less certain. It ensures that with high 
probability  is an upper confidence bound of the true Q function  Qk

h(s, a) Q*h (s, a) ∀(s, a)
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LSVI-UCB Bonus
The agent is learning from limited data. Like a regression confidence interval, we want to hedge 
against uncertainty in our estimate of . For any new , the uncertainty in prediction is 
proportional to

ŵh (s, a)

β | |ϕ (s, a) | |Λ−1
h

= β ϕ (s, a)⊤ Λ−1
h ϕ (s, a)

where β = dH d log ( dKH
δ )

Intuition: Another way to think about this is that this is a carefully curated bonus given to our 
agent that promotes exploration by taking actions that are less certain. It ensures that with high 
probability  is an upper confidence bound of the true Q function  Qk

h(s, a) Q*h (s, a) ∀(s, a)

How do we get 
this?
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LSVI-UCB Bonus Proof Sketch
Lemma A (Theorem 1 in Abbasi-Yadkori et al. 2011). Let  be a filtration. Let  be a real-valued stochastic process such that 

 is -measurable and  is conditionally -sub-Gaussian for some  i.e.





Let  be an  -valued stochastic process such that  is -measurable. Assume that  is a  positive definite matrix. For any 
, define





Then, for any , with probability at least , for all 


{ℱt}∞
t=0 {ηt}∞

t=1
ηt ℱt ηt R R ≥ 0

∀λ ∈ ℝ, 𝔼 [eληt ∣ ℱt−1] ≤ exp ( λ2R2

2 )
{xt}∞

t=1 ℝd xt ℱt−1 Z d × d
k ≥ 0

Zk = Z +
t

∑
s=1

XsX⊤
s

δ > 0 1 − δ t ≥ 0

∥
k

∑
i=1

xiηi∥2
Z−1

k
≤ 2R2 log ( det(Zk)1/2 det(Z)−1/2

δ )

This is a self-normalizing martingale bound using Supermartingales + 
Stopping Time Argument (With Fatou’s Lemma) + Markov’s Inequality

https://papers.nips.cc/paper_files/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
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LSVI-UCB Bonus Proof Sketch
Lemma B (Lemma D.6 of Jin et al. 2020). Let  denote a class of functions mapping from  to  with the following parametric form





where the parameters  satisfy , and the minimum eigenvalue satisfies . Assume  for 
all  pairs, and let  be the -covering number of  with respect to distance





Then,





𝒱 𝒮 ℝ

V( ⋅ ) = min {max
a [w⊤ϕ( ⋅ , a) + β ϕ( ⋅ , a)⊤Λ−1ϕ( ⋅ , a)], H}

(w, β, Λ) ∥w∥ ≤ L, β ∈ [0,B] λmin(Λ) ≥ λ ∥ϕ(s, a)∥ ≤ 1
(s, a) 𝒩ε ε 𝒱

dist(V, V′￼) = sup
s

|V(s) − V′￼(s) |

log 𝒩ε ≤ d log (1 +
4L
ε ) + d2 log (1 +

8 dB2

λε2 ) .

https://proceedings.mlr.press/v125/jin20a.html
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LSVI-UCB Regret

ℛ (K) =
K

∑
k=1

[V*1 (sk
1) − Vπk

1 (sk
1)]

≤
K

∑
k=1

[Vk
1 (sk

1) − Vπk
1 (sk

1)]

≤
K

∑
k=1

H

∑
h=1

ζh
k + 2β

K

∑
k=1

H

∑
h=1

(ϕh
k )⊤(Λh

k)
−1ϕh

k

<
∼

𝒪̃ ( d3H4K)
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Privacy Concerns In LSVI-UCB

Diagram Credit: Provably Efficient Reinforcement Learning with Linear 
Function Approximation by Jin et al. 2020



51Diagram Credit: Provably Efficient Reinforcement Learning with Linear 
Function Approximation by Jin et al. 2020

Think of  as a one-hot vector, then  is 
capturing something similar to visitation 
counts which uses trajectory information with 
possibly private data

ϕ(s, a) Λh

Privacy Concerns In LSVI-UCB



52Diagram Credit: Provably Efficient Reinforcement Learning with Linear 
Function Approximation by Jin et al. 2020

These are parameter estimates for the feature 
regressors which allow us to calculate the Q-
function due to Linear MDPs. These can also leak 
information about trajectories taken by the policy

Privacy Concerns In LSVI-UCB

We need to privatize these terms!
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Differential Privacy Tools
Lemma C (Lemma 1.7 of Bun and Steiner. 2016). Let  and  be (possibly randomized) mechanisms. For 

, suppose  satisfies -DP, and for each ,  satisfies -DP. Define the composed mechanism





Then,  satisfies -DP.

𝒜 : 𝒳n → 𝒴 𝒜′￼: 𝒳n × 𝒴 → 𝒵
δ > 0 𝒜 (ε1, δ) y ∈ 𝒴 𝒜′￼( ⋅ , y) (ε2, δ)

𝒜′￼′￼(x) = 𝒜′￼(x, 𝒜(x))

𝒜′￼′￼ (ε1 + ε2, 2δ)

Lemma D (Theorem 3.22 of Dwork and Roth. 2014). Let  be an arbitrary d-dimensional function with





where  are neighboring datasets. The Gaussian mechanism  with noise level  is given by





For all , a Gaussian Mechanism with noise parameter  satisfies -DP.


f : ℕ𝒳 → ℝd

Δ( f ) = max
𝒰∼𝒰′￼

| | f (𝒰) − f (𝒰′￼) | |2

𝒰 ∼ 𝒰′￼ ℳGauss σ

ℳGauss (𝒰) = f (𝒰) + 𝒩 (0,σ2Id)

0 < δ, ϵ < 1 σ =
Δ
ϵ

2 log (1.25/δ) (ϵ, δ)

https://arxiv.org/abs/1605.02065
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
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Differential Privacy Tools
Lemma E (Billboard Lemma of Hsu et al. 2013). Suppose that a randomized mechanism  is -DP. Let 

 be a dataset containing  users. Then, consider any set of functions  for  where  is the 

portion of the dataset containing user ’s data. Then, the composition  is -JDP where 

 is the canonical projection to the -th users data

𝒜 : 𝒳n → 𝒴 (ϵ, δ)
U ∈ 𝒰 n fi : 𝒰i × 𝒴 → 𝒴i i ∈ [n] 𝒰i

i {fi (Πi (U), 𝒜 (U))}i∈[n]
(ϵ, δ)

Πi : 𝒰 → 𝒰i i

Remark: This lemma tells us that if we construct an -DP 
algorithm and we have a function  that operates on user ’s 
data, then that mechanism is indeed .

(ϵ, δ)
fi i

(ϵ, δ)

https://arxiv.org/abs/1311.2828
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Previous Work
[Theorem 8 of Luyo et al. 2021]. Fix any privacy level . For any , their algorithm is -JDP 
and, with probability at least , its regret is bounded as follows:


ε, δ ∈ (0,1) p ∈ (0,1) (ε, δ)
1 − p

ℛ (K) = Õ ( d3H4K + H11/5d8/5K3/5/ε2/5)

Approach: Privatize Λh, wh

Λ̃ h = Λh + 𝒩 (0,𝒪 (K1/5d3/10H2/5ϵ−4/5 log(1/δ)))
w̃b+1,h = Λ̃−1

b+1,h

b+1

∑
i=1

ϕ(si,h, ai,h)[rh(si,h, ai,h) + Vb+1,h+1(si,h+1)] + 𝒩 (0, Λ̃−1
b+1,h ⋅ 𝒪 ( 1

ϵ
H2B log ( 1

δ )) ⋅ Λ̃−1
b+1,h)

Static Batching to reduce the number of policy switches to  𝒪 (poly (K))

https://arxiv.org/abs/2112.01585
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Previous Work
[Theorem 16 of Ngo et al. 2022]. Fix any privacy level . For any , their algorithm is -JDP 
and, with probability at least , its regret is bounded as follows:


ε, δ ∈ (0,1) p ∈ (0,1) (ε, δ)
1 − p

ℛ (K) ≤ Õ ( d3H4K + H3d5/4K1/2/ε1/2)

Approach: Same techniques as previous work but instead of a 
static batching schedule, they use Adaptive Batching to reduce 
the number of policy switches to 𝒪 (log(K))

https://arxiv.org/abs/2202.01292
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Motivating Work: LSVI-UCB++
[Theorem 5.1 of He et al. 2023]. For any linear MDP  with  sufficiently large, if we set the parameters  and the confidence intervals 

 as 











then with high probability of at least , the regret of LSVI-UCB++ is upper bounded as follows





ℳ K λ = 1/H2

β, β̄, β̃

β = 𝒪 (H dλ + d log2 (1 + dKH/(δλ)))
β̄ = 𝒪 (H dλ + d3H2 log2 (dHK/(δλ)))
β̃ = 𝒪 (H2 dλ + d3H4 log2 (dHK/(δλ)))

1 − 7δ

ℛ(K) ≤ 𝒪̃ (d H3K)

Instead of solving a ridge regression problem, we solve a weighted ridge 
regression problem using estimated weights from data. This allows us to 
use a Bernstein-type self-normalized martingale argument rather than 
a Hoeffding-type to get a bonus that improves our regret.

https://arxiv.org/abs/2212.06132
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Motivating Work: JDP In Tabular MDPs
[Theorem 4.1 of Qiao and Wang. 2023]. For any privacy budget , failure probability , and any privatizer where 
the private counts are close to the true counts with high probability, with probability at least , their algorithm is -JDP 
and achieves regret upper bounded by:


  

ϵ > 0 0 < β < 1
1 − β (ϵ, δ)

ℛ(K) ≤ Õ ( H3SAK + S2AH3/ϵ)

In previous work, since we would use a Hoeffding-bound that only 
depends on the counts, it is sufficient to privatize the counts loosely 
using Gaussian noise with a sufficient variance component. However, to 
use a Bernstein-bound, we need to carefully privatize the bounds to 
ensure that we can upper bound the variance term in a Bernstein-
bound

https://arxiv.org/abs/2212.04680
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Tool That Drives Both These Works
[Theorem 7.1 of He et al. 2023]. Let  be a filtration. Let  be a real-valued stochastic process such that  is -measurable and  is 

-measurable. Define  Assume that  and  satisfies





Then, for any , with probability at least , for all 


 

{ℱt}∞
t=0 {xt, ηt}∞

t=1 xt ℱt ηt

ℱt+1 Zt := λI +
t

∑
i=1

xix⊤
i for t ≥ 1 and Z0 := λI . |xt∥2 ≤ L ηt

𝔼[ηt ∣ 𝒢t] = 0, 𝔼[η2
t ∣ 𝒢t] ≤ σ2, and |ηt ⋅ min{1,∥xt∥Z−1

t−1
} | ≤ R ∀t ≥ 1.

δ > 0 1 − δ t > 0

t

∑
i=1

xiηi

Z−1
t

≤ 𝒪(σ d + R) .

This is a self-normalizing martingale bound using Sherman-Morrison 
+ Uniform Bernstein bound (using Freedman’s Inequality) 

https://arxiv.org/abs/2212.06132
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Can we design a -JDP algorithm that is near minimax optimal for non-private learning and 
improves the cost of privacy using more refined privatization and concentration techniques?

(ϵ, δ)

ℛ (K) ≤ Õ ( d3H4K + H3d5/4K1/2/ε1/2)
Non-private 

learning regret: 
We can do better 

using LSVI-UCB++

Cost of privacy: can 
we improve this to 
𝒪 (poly (dHK)/ϵ)
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Yes We Can: DP-LSVI-UCB++
[Theorem 3.2 of Sahu. 2025]. For any linear MDP  with  sufficiently large, if we set the parameters 








and the confidence intervals  as 








then with high probability of at least , the regret of DP-LSVI-UCB++ is upper bounded as follows





ℳ K

λ Λ̃ = 𝒪 dHK 2 + (
log (5H/δ)

d )
2/3

L = 𝒪 (H dHK log (dKH/δ))
̂β, β̌, β̄

̂β = β̌ = 𝒪 (HL dλ Λ̃ + d3H2 log2 (dH3KL2/(δλ Λ̃)))
β̄ = 𝒪 (H2L2 dλ Λ̃ + d3H4 log2 (dH4KL2/(δλ Λ̃)))

1 − 7δ

ℛ(K) ≤ 𝒪̃ (d H3K + H15/4d7/6K1/2/ϵ)

https://arxiv.org/abs/2504.09339
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We take these terms from 
LSVI-UCB++ and privatize 
them with sufficient noise 

using a Gaussian 
mechanism 
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DP-LSVI-UCB++ Privacy Guarantee
[Theorem 3.1 of Sahu. 2025]. DP-LSVI-UCB++ satisfies -JDP where  for 
(ϵ, δ) ϵ = ρ + 2 ρ log (1/δ) ρ > 0

Proof Sketch:
1. Compute the -sensitivity of each privatized estimator by considering neighboring 
sequences 

l2
𝒰, 𝒰′￼

2. Use a Gaussian mechanism with sufficient noise to ensure each is -zCDPρ/4KH

3. By Advanced Composition, it is -zCDPρ

4. By a conversion from zCDP to DP, DP-LSVI-UCB++ is -DP(ϵ, δ)

5. Use the Billboard Lemma to conclude that DP-LSVI-UCB++ is -JDP.(ϵ, δ)

https://arxiv.org/abs/2504.09339
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DP-LSVI-UCB++ Privacy Guarantee
[Theorem 3.1 of Sahu. 2025]. DP-LSVI-UCB++ satisfies -JDP where  for 
(ϵ, δ) ϵ = ρ + 2 ρ log (1/δ) ρ > 0

Proof Sketch:
1. Compute the -sensitivity of each privatized estimator by considering neighboring 
sequences 

l2
𝒰, 𝒰′￼

2. Use a Gaussian mechanism with sufficient noise to ensure each is -zCDPρ/4KH

3. By Advanced Composition, it is -zCDPρ

4. By a conversion from zCDP to DP, DP-LSVI-UCB++ is -DP(ϵ, δ)

5. Use the Billboard Lemma to conclude that DP-LSVI-UCB++ is -JDP.(ϵ, δ)

https://arxiv.org/abs/2504.09339
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DP-LSVI-UCB++ Privacy Guarantee
[Theorem 3.1 of Sahu. 2025]. DP-LSVI-UCB++ satisfies -JDP where  for 
(ϵ, δ) ϵ = ρ + 2 ρ log (1/δ) ρ > 0

Proof Sketch:
1. Compute the -sensitivity of each privatized estimator by considering neighboring 
sequences 

l2
𝒰, 𝒰′￼

2. Use a Gaussian mechanism with sufficient noise to ensure each is -zCDPρ/4KH

3. By Advanced Composition, it is -zCDPρ

4. By a conversion from zCDP to DP, DP-LSVI-UCB++ is -DP(ϵ, δ)

5. Use the Billboard Lemma to conclude that DP-LSVI-UCB++ is -JDP.(ϵ, δ)

Definition (Zero-Concentrated Differential Privacy (zCDP)). 
A randomized mechanism  is -zCDP if 

 differing on a single entry and all 
ℳ : 𝒳n → 𝒴 (ξ, ρ)

∀x, x′￼ ∈ 𝒳n α ∈ (1,∞)

Dα (ℳ(x) | |ℳ(x′￼)) ≤ ξ + ρα

where  is the -Rényi divergence 
between distribution  and . Equivalently,

Dα (ℳ(x) | |ℳ(x′￼)) α
ℳ(x) ℳ(x′￼)

𝔼 [e(α−1)Z] ≤ e(α−1)(ξ+ρα)

https://arxiv.org/abs/2504.09339
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DP-LSVI-UCB++ Regret Proof Sketch

1. Use the privatized terms and prove their utility i.e. how close are they to the non-privatized 
terms. Since we used a Gaussian mechanism, it is sufficient to use a Gaussian concentration 
inequality on the matrix operator norm or the -norml2

2. Use the private terms in place of the non-private terms and use the arguments from LSVI-
UCB++ to find the upper confidence bonuses using a Bernstein self-normalized concentration 
inequality, uniform covering arguments, elliptical potentials, and utility of the privatized terms

3. Use the bonuses to prove optimism and pessimism of the privatized Q-value function
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DP-LSVI-UCB++ Regret Proof Sketch
First, let us define the following events 

: Accurate value predictions despite privatized regressionℰ
: Sharper bounds using Bernstein-style control of noise 

and variance
ℰ̃

: Estimated values of learned policy  actual value of 
true policy (uniform stability)
ℰ1 ≈

: Optimistic and pessimistic values sandwich the truth 
(stability under noise)
ℰ2

: Total estimation variance is bounded (learnability of the 
environment)
ℰ3
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DP-LSVI-UCB++ Regret Proof Sketch
Conditioned on the event ℰ ∩ ℰ̃ ∩ ℰ1 ∩ ℰ2 ∩ ℰ3

ℛ(K) =
K

∑
k=1

(V*1 (sk
1) − ˜ ̂V πk

k,1(s
k
1))

≤
K

∑
k=1

(˜ ̂V k,1(sk
1) − ˜ ̂V ̂π k

k,1(s
k
1))

≤ 16d4H8ι + 40βd7H5ι + 8β 2dHι
H

∑
h=1

K

∑
k=1

(σ̃2
k,h + H) + 4 H3K log(H/δ)

≤ Õ (d H3K +
H15/4d7/6K1/2 log(10dKH/δ)

ϵ )
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DP-LSVI-UCB++ enjoys a privacy guarantee at (almost) no drop in utility

Environment Setup: We use a 6-state chain environment with two actions: left and 
right. The agent starts on the left and aims to reach the rightmost state for higher 
rewards. we set the planning horizon  and run  episodes.H = 20 K = 50,000
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Conclusion
• DP-LSVI-UCB++ is a -JDP algorithm for linear MDP that achieves the new state-of-the-art 

regret bound by using Bernstein concentration, Gaussian mechanisms, and GOE 
perturbations for tight utility-privacy tradeof

(ϵ, δ)

• Our results show that theoretically and empirically, we match or outperform non-private baselines 
and do better than previous work in this area

• Future directions


A. Extending these results to the low-rank MDP setting


B. Exploring alternative mechanism that adapt noise dynamically based on the observed data’s 
sensitivity could lead to improved regret bounds
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Thanks For Listening! Questions?


