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Recent Successes In Reinforcement Learning (RL)
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Contextual Bandits
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Reasonable Policies May Use Sensitive Data
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Reasonable Policies May Use Sensitive Data
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Neural Networks Can Memorize Personal Information From One Example

Anonymisation Fails Inserting the (memorised) unique feature
Single sample with personal features changes prediction

DNN trained for
> X-ray classification

Hartley et al. 2023
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We Must Incorporate Privacy-Preserving Mechanisms Into RL

We require a mathematically rigorous framework that provides statistical guarantees for our
(possibly randomized) mechanism:

Remark: This is a relaxation of €-DP as in many settings,

achieving &-DP Is nearly impossible or comes at high utility
cost
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Differential Privacy (DP)
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There are a few issues with (¢, 0)-DP
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There are a few issues with (¢, 0)-DP
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There are a few issues with (¢, 0)-DP
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There are a few issues with (¢, 0)-DP
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There are a few issues with (¢, 0)-DP
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There are a few issues with (¢, 0)-DP
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There are a few issues with (¢, 0)-DP
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There are a few issues with (¢, 0)-DP
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We need a further relaxation of DP ...

One which works nicely with contextual bandit problems on a per-user level but does not
sacrifice privacy on a per-decision or per-context level, ensuring that individual contexts
do not overly influence the learned policy:
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Joint Differential Privacy (JDP)
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In this talk:

Can we develop an efficient (&, 0)-JDP algorithm for
sequential decision-making problems with linear parametric
representations, and provide a novel algorithm with provably

efficient guarantees for privacy-preserving exploration?
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Outline

1. Problem Setup + Previous Work and Motivation
2. Can we do better?

3. Our regret bound
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Episodic Time-Inhomogeneous Finite-Horizon MDPs
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Episodic Time-Inhomogeneous Finite-Horizon MDPs
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Episodic Time-Inhomogeneous Finite-Horizon MDPs
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Episodic Time-Inhomogeneous Finite-Horizon MDPs
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Episodic Time-Inhomogeneous Finite-Horizon MDPs
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Episodic Time-Inhomogeneous Finite-Horizon MDPs

Policy: state to action
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Formal RL Problem Setting
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Linear MDP
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Linear MDP
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LSVI-UCB

Algorithm 1 Least-Squares Value Iteration with UCB (LSVI-UCB)

1: forepisode k =1,...,K do
Receive the initial state x7.
forsteph=H,...,1do
Ap — St (a7, al)p(x],al)T + A1
wh Ayt 32701 @(a, ap) (a7, af) + maxe Qua1 (¢4, a)).
Qh('a ) — min{w;‘ﬁ('a ) T ﬂ[d)(v °)TA;1¢(" ')]1/2? H}
forsteph=1,..., H do

: k k k
Take action aj < argmax,. 4 Qn(z}, a), and observe zj _ ;.

LSVI-UCB Algorithm [Jin et al. 2020]
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LSVI-UCB

Algorithm 1 Least-Squares Value Iteration with UCB (LSVI-UCB)

I: for episode k =1,..., K do Think of ¢)(s, a) as one-hot vector, then A,
2:  Receive the initial state z¥. is capturing something similar to visitation
3: for step h = H,...,1do counts which uses trajectory information
4. - j-:i k(wlz | a;) ¢(-’I32 al )T NS with possibly private data

5: wh Ay Y0000 d(g, af)[rn (e, af) + maxg Qria (24, a)).

6: Qh('a ) — mln{W;‘/’(a ) T /6[¢(7 ')TA;1¢(3 ')]1/2a H}

7: forsteph=1,...,H do

8: Take action a;f < argmax,. 4 Qn(z7,a), and observe z 11

LSVI-UCB Algorithm [Jin et al. 2020]
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LSVI-UCB
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LSVI-UCB

Algorithm 1 Least-Squares Value Iteration with UCB (LSVI-UCB)

1: forepisode k =1,...,K do These are parameter estimates for the feature

2: Receive the initial state g;’f regressors which allow us to calculate the Q-

3. for steph = H,...,1do function due to Linear MDPs. Again, this can leak

4. A Jf-:i (:L';, a;) ¢(xz | a;)T AT iInformation about trajectories taken by the policy
— k—1

5: @% A PSR (2t al) e (2], af) + max, Qnr+1(z}1,a)].

6: h('a ) — mln{W;(l)(, ) T /6[¢(a ')TA]:1¢(3 ')]1/2a H}

7: forsteph=1,...,H do

8: Take action a;f < argmax,. 4 Qn(z7,a), and observe z 11

LSVI-UCB Algorithm [Jin et al. 2020]
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Differential Privacy Techniques




Previous Work

Techniques Used

Ay =N + N (0, O (l\/BHlog (1/5)))

E

N I —
i, =u,+ (0,0 —=VH2Blog (1/5)
E

Static Batching to reduce the number of policy switches to O(poly(K))
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Previous Work

Techniques Used

Same techniques as previous work but instead of a static batching
schedule, they use Adaptive Batching to reduce the number of policy

switches to O(log(K))
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LSVI-UCB

Algorithm 1 Least-Squares Value Iteration with UCB (LSVI-UCB)

1: forepisode k =1,..., K do
Receive the initial state z7.
forsteph=H,...,1do

An 3721 d(af, ap)p(a7,ap) T + - L
wh A1 021 B(a, 0 Irn (@, af) + maxe Qnaa (244, 0)].
Qh('a ) — m1n{wZ¢(, ) + IB[¢(a ')TA}:1¢('3 ')]1/2, H}

forsteph=1,...,H do

.k k k
Take action aj < argmax,. 4 Qx(z},,a), and observe xj _ ;.

® X &> N BN

LSVI-UCB Algorithm [Jin et al. 2020]
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Motivating Work: LSVI-UCB+

Techniques Used

Instead of solving a ridge regression problem, we solve a weighted ridge
regression problem using estimated weights from data. This allows us to use
a self-normalized martingale argument using Azuma-Bernstein rather than
Azuma-Hoeffding to get a bonus that improves our regret

47



Motivating Work: JDP In Tabular MDPs

Techniques Used

In previous work, since we would use a Hoeffding-bound that only depends
on the counts, it is sufficient to privatize the counts |loosely using Gaussian
noise with sufficient variance component. However, to use a Bernstein-
bound, we need to carefully privatize the counts to ensure that we can
upper bound the variance term in a Bernstein-bound
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Can we design a (&, 0)-JDP algorithm that is near minimax optimal for non-private learning and
improves the cost of privacy using more refined privatization and concentration techniques?

R(K) — 6(1 /d3H4K 4 H3d5/4K1/2/81/2)
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Can we design a (&, 0)-JDP algorithm that is near minimax optimal for non-private learning and
improves the cost of privacy using more refined privatization and concentration techniques?

R(K) — O n H3d5/4K1/2/8 1/2)

Non-private
learning regret:

We can do better
using LSVI-UCB+
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Can we design a (&, 0)-JDP algorithm that is near minimax optimal for non-private learning and
improves the cost of privacy using more refined privatization and concentration techniques?

R(K) = O + )

Non-private
learning regret:

We can do better
using LSVI-UCB+

Cost of privacy: can
we improve this

O (poly (HdK) /8)

o1



Our Work

Compared to Luyo et al. (2021) and Ngo et al. (2022), this regret bound
achieves tighter dependence on H, d for the non-private terms and
tighter dependence on H, € for the private terms
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Proof Sketch

1. Identify terms in the non-private algorithm that are used for estimating
2. Privatize them by (cleverly) adding noise to the terms

3. Prove the utility of the privatized terms (how close are they to the non-
private terms)

4. Use the private terms in place of the non-private terms and use your
standard LSVI-UCB techniques (i.e. self-normalized martingale
concentrations, uniform covering arguments, elliptical potentials, and
utility of the privatized terms)
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Questions?
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