
Unlocking the Power of Databases: The Crucial
Role of Theory and Indices in Scalable Vector

Databases for Machine Learning

Sharan Sahu

Cornell University
ss4329@cornell.edu

August 28th, 2024

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 1 / 20



Overview

1 Introduction

2 What Are Indices?

3 Examples of Indices
B+ Trees and K-d Trees

4 Vector Databases
Overview and Use Cases

5 Integration with Retrieval-Augmented Generation (RAG)

6 Conclusion

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 2 / 20



Introduction

I am first-year PhD student in Statistics and Machine Learning at
Cornell University. Before joining Cornell University, I was an
undergraduate at UC Berkeley where I studied Computer Science.

I am a DoD SMART Scholar and have done internships at Marine
Corps Tactical Systems Support Activity (MCTSSA) in Software
Engineering and Data Science.

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 3 / 20



Introduction

Databases are fundamental pieces of software that allows us to store,
manipulate, and retrieve data quickly and efficiently.

There are many types of databases: Relational (MySQL, Oracle,
PostgreSQL), NoSQL (MongoDB, Cassandra, Redis), Cloud (AWS
RDS, GCP SQL, Azure SQL), and Vector (FAISS, Milvus, Pinecone).

All these databases and their variants have important use cases and
properties, but vector databases are dominating the field of machine
learning.

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 4 / 20



Example Schema

SID Name Age Major GPA
1001 Alice Johnson 20 Computer Science 3.8

1002 Bob Smith 22 Mathematics 3.5

1003 Carol White 19 Biology 3.9

1004 David Lee 21 Physics 3.7

1005 Eva Green 20 Chemistry 3.6
...

...
...

...
...

41001 Bob Myers 37 Art History 2.1

Table: Student Records (With Millions of Rows)

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 5 / 20



SQL Query Examples

Filter People Based on Age Greater Than 30:

SELECT ∗
FROM Student s
WHERE Age > 30 ;

Filter People Based on Age Greater Than 30 and GPA Less Than
2.5:

SELECT ∗
FROM Student s
WHERE Age > 30 AND GPA < 2 . 5 ;

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 6 / 20



Naive Way of Filtering

Why Linear Filtering Without an Index or Sorting is Inefficient:

We want to find students who satisfy specific conditions, e.g., age
greater than 30 and GPA less than 2.5.

Problem: Only a few thousands students in the entire database meet
these criteria.

Linear Search: Without indexing or sorting, the database engine
must scan every single entry in the table.

Cost: This means checking all 40K+ entries, which is
time-consuming and computationally expensive.

Inefficiency: The cost of scanning 40K+ records just to find a few
thousand relevant results is inefficient and will take a long time.

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 7 / 20



Better Way of Filtering

Imagine a Textbook:
When reading a textbook about databases, if you want to find a
chapter or page about a particular topic, you don’t scan the entire
book to find the content you are interested in
Instead, you use a table of contents or Appendix to quickly find which
page contains the content you want.

Applying This to Databases:
Instead of scanning every entry in the ‘Students‘ table, an ”table of
contents” allows the database to jump directly to the relevant entries.
For example, if we create an ”table of contents” on the ‘Age‘ and
‘GPA‘ columns, the database can efficiently locate students who are
older than 30 and have a GPA less than 2.5.

Efficiency:
Using a ”table of contents”, the number of comparisons drops from
1,000,000 to just a few dozen, saving significant time and
computational resources.

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 8 / 20



Indices: The Solution For Fast Lookups

An index is a data structure that enables fast lookup and modification
of data entries by search key

Data Entries: items stored in the index

Modification: want to support fast insert and delete

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 9 / 20



B+ Trees

B+ Trees: A type of self-balancing tree structure used for indexing
in databases.
Usage:

Primarily used for creating indexes on columns where efficient retrieval
is critical where you need to perform equality and range queries on
columns.
Commonly used in relational databases to speed up search operations,
such as ‘WHERE‘ clauses.

Benefits:
Supports efficient insertion, deletion, range, and lookup operations.
Disk-based B+ Trees keep the data organized in a way that minimizes
disk I/O operations, crucial for large-scale data storage.

Limitations:
Inefficient for multi-dimensional queries (e.g., finding students based on
a combination of Age and GPA) without using composite indexes.
Not ideal for unstructured or high-dimensional data, such as text or
image data, where more advanced data structures like R-trees or
hash-based indexing might be preferable.

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 10 / 20



B+ Tree Example: Indexing by Age

Figure: B+-Tree Construction Indexing By Age

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 11 / 20



B+ Tree Example: Indexing by GPA

Figure: B+-Tree Construction Indexing By GPA

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 12 / 20



K-d Trees

K-d Trees: A binary tree structure used for organizing points in a
k-dimensional space.
Usage:

Primarily used for spatial searches involving multi-dimensional data,
such as range searches and nearest neighbor searches.
Commonly used in applications like machine learning for tasks such as
clustering and data retrieval.

Benefits:
Efficiently handles multi-dimensional data, making it suitable for
complex queries involving multiple attributes (e.g., location-based
searches).
Provides fast nearest neighbor searches, which are crucial in
information retrieval and large language models.

Limitations:
As the number of dimensions (k) increases, the efficiency of K-d Trees
decreases, a phenomenon known as the ”curse of dimensionality.”
A K-d tree may become unbalanced with frequent updates, leading to
inefficient searches.

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 13 / 20



K-d Tree Example: Indexing by Age and GPA

Figure: K-d Tree Construction Indexing By Age and GPA

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 14 / 20



Vector Databases

Problem: from document corpus, find the one most similar to a
“query doc”

Docs = news articles, query doc = a new article
Docs = code, query doc = buggy program

We can place these documents into a database that has a bunch of
embeddings and then use a k-d tree for doing similarity search.

This is a vector database!

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 15 / 20



Vector Databases

Vector Databases: Specialized databases optimized for storing and
querying high-dimensional vectors. These databases are crucial in
modern applications where data is represented in vector form.

Storage and Retrieval: Vectors can represent text embeddings, image
features, or user preferences, and are stored in such a way that allows
for efficient retrieval based on similarity or distance metrics (e.g.,
cosine similarity, Euclidean distance).

Applications:
Recommendation Systems: Leveraging user behavior vectors to
recommend products, movies, or music based on similarity to other
users or items.
Image Retrieval: Searching large image databases by comparing the
vector representations of query images with those in the database to
find similar images.
Text Search: Utilizing text embeddings to perform semantic searches,
where results are based on meaning rather than keyword matching.

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 16 / 20



RAG and Vector Databases

RAG: Combines large language models (LLMs) with vector databases
for enhanced information retrieval.

Vector databases provide efficient storage and retrieval of
high-dimensional data, crucial for the real-time context-aware
responses in AI applications.

Together, they enable more accurate and relevant responses by
aligning LLM outputs with the most relevant contextual information
retrieved from vector databases.

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 17 / 20



Scaling Vector Databases: Moving Away From K-d Trees

K-d trees are effective for low-dimensional vector data, offering a
straightforward method for indexing and searching.

Ideal for applications with fewer dimensions where exact nearest
neighbor searches are feasible.

As data volume or dimensionality increases, transitioning to more
advanced indexing structures is crucial. Shifting from exact nearest
neighbor searches to approximate methods enhances scalability and
maintains performance in high-dimensional spaces.

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 18 / 20



Conclusion

Theoretical understanding of database structures is essential for
designing efficient vector databases.

Practical applications like RAG benefit from indexing techniques like
K-d trees, a foundational data structure rooted in database theory.

Database theory is important and has a wide variety of applications.

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 19 / 20



Q&A

Questions?

Sharan Sahu (Cornell University) Vector Databases August 28th, 2024 20 / 20


	Introduction
	What Are Indices?
	Examples of Indices
	B+ Trees and K-d Trees

	Vector Databases
	Overview and Use Cases

	Integration with Retrieval-Augmented Generation (RAG)
	Conclusion

