
SSL, SFT, and RLHF: The ML Problems
Behind LLMs

1

Sharan Sahu | Stats and Data Sci. PhD | Cornell University

Recent Adoption of LLMs

2

Foundational Models

3

“A foundation model is a large-scale machine learning model trained
on a broad data set that can be adapted and fine-tuned for a wide variety
of applications”1

[1] On the Opportunities and Risks of Foundation Models by Bommasani et al. 2022

4
Foundational ModelsTraditional Machine Learning

Question Answering

Train Eval

Labels ML Models Tasks

Foundational Models

Text Summarization

Sentiment Analysis

Machine Translation

Question Answering

Unlabeled
Data

Tasks

Text Summarization

Sentiment Analysis

Machine Translation

Pre-Train Finetune

Foundational
Model

Diagram Credit: Kianté Brantley

https://xkianteb.github.io/

5

Stages of LLM Training

Diagram Credit: Training language models to follow instructions with
human feedback by Ouyang, Long, et al.

6

Encoder

Decoder

Transformer Architecture

Diagram Credit: Attention Is All You Need by Vaswani et al.

7

Encoder

Decoder

Transformer Architecture

8

MatMul

Scale

Mask (Opt.)

Softmax

MatMul

Q K V

Attention (Q, K, V) = softmax (QK⊤

dk) V

Linear Linear Linear

Scaled Dot-Product Attention

Linear Linear Linear

Scaled Dot-Product Attention

Q

Linear

K

Linear

V

Linear

Scaled Dot-Product Attention

Concat

Linear

MultiHead (Q, K, V) = Concat (head1, …, headh) WO

headi = Attention (QWQ
i , KWK

i , VWV
i)

Scaled Dot-Product Attention Multi-Head Attention

9

First Stage of LLMs: Pre-Training (SSL)
Language Models

p(y1, …, yn) = p(y1)p(y2 ∣ y1)⋯p(yn ∣ y1, …, yn−1) =
n

∏
k=1

p(yk |y1, …, yk−1)

Pre-Train (SSL)

Large Unlabeled Text Data

Diagram Credit: Kianté Brantley

https://xkianteb.github.io/

10

Pre-Training in Encoder Models

11

Transformer Encoder

workLLMsI use[CLS] forInput

Masked Language Modeling (MLM)

12

Transformer Encoder

work[MASK]I use[CLS] forInput

Masked Language Modeling (MLM)

13

Transformer Encoder

work[MASK]I use[CLS] for

workI use[CLS] for

Input

Output

yi,mask−pred = argmaxν∈𝒱p(ν ∣ x−i, y−i)

LLMs

14

Transformer Encoder

work[MASK]I use[CLS] for

workI use[CLS] for

Input

Output

LLMs

yi,mask−pred = argmaxν∈𝒱p(ν ∣ x−i, y−i)

Let for be the
randomly chosen tokens to mask, , and

mi ∼i.i.d Unif (1,n) i = 1,…, k
M = {mi}k

i=1
xmasked = REPLACE (x, m, [MASK])

min
θ∈Θ

ℒMLM (x, θ) = 𝔼 [−∑
i∈M

log ℙθ (xi ∣ xmasked)]

15

workLLMsI use[CLS] for

Next Sentence Prediction

[SEP] usefulThey are

Transformer Encoder

Sentence 1 Sentence 2

16

workLLMsI use[CLS] for [SEP] usefulThey are

Transformer Encoder

FCN + Softmax

isNext

17

Pre-Training in Encoder-Decoder Models

18

Consecutive Span Prediction

I use LLMs for work! They are useful!
Original Text

I use <X> work! They are <Y>!
Input Text

<X> LLMs for <Y> useful <Z>
Target Text

19

Transformer Encoder

work<X>I use[CLS] [SEP] <Y>They are

LLMs for<X> <Y> useful <Z>

Transformer Decoder

Consecutive Span Prediction
LLMs for useful

20

Pre-Training in Decoder Models

21

Transformer Decoder

workLLMsI use[BOS] forInput

Casual Language Modeling

I use LLMs for work [EOS]

22

Transformer Decoder

workLLMsI use[BOS] forInput

Casual Language Modeling

I use LLMs for work [EOS]

min
θ∈Θ

ℒCLM (x, θ) = −
n

∑
i=1

log ℙθ (yi ∣ y<i)

Next Word Prediction

Casual Language Modeling Objective

23

Generative Pre-Training

Diagram Credit: Improving Language Understanding by Generative
Pre-Training by Radford et al.

24

Second Stage of LLMs: Supervised Fine Tuning (SFT)
Language Models

ℒ(x, y) = −
n

∑
i=1

log ℙθ (yi ∣ y<i, x)

Fine-Tuning

Input (Prompt): x

Translate this sentence to Hindi: LLMs are
great!

Explain Ordinary Least Squares (OLS)

एलएलएम बहुत अचे्छ हैं

Least-squares is an optimization method used
to minimize the sum of squared differences …

Output: y

Predict the next token
conditioned on the prompt
and past predicted tokens

25

Supervised Fine Tuning (SFT)

26

SFT Moves Towards Alignment

27

Third Stage of LLMs: Reinforcement Learning From Human Feedback (RLHF)

ℒ(x, y) = −
n

∑
i=1

log ℙθ (yi ∣ y<i, x)

Fine-tuning

Prompt: x

Translate this sentence to
Hindi: LLMs are great!

Explain Ordinary Least
Squares (OLS)

Response: y

एलएलएम बहुत अचे्छ हैं

Least-squares is an
optimization method ……

Next token prediction

How can I hack into a computer
system?

Here are step-by-step instructions to
hack a computer system …

Perfect! I can use this for insidious
purposes …

Environment

State

Action

Ability to follow instructions aligned with human preferences

Diagram Credit: Kianté Brantley

https://xkianteb.github.io/

28

Third Stage of LLMs: Reinforcement Learning From Human Feedback (RLHF)

ℒ(x, y) = −
n

∑
i=1

log ℙθ (yi ∣ y<i, x)

Prompt: x

Translate this sentence to
Hindi: LLMs are great!

Explain Ordinary Least
Squares (OLS)

Response: y

एलएलएम बहुत अचे्छ हैं

Least-squares is an
optimization method ……

Fine-tuning

How can I hack into a computer
system?

Here are step-by-step instructions to
hack a computer system …

Perfect! I can use this for insidious
purposes …

Environment

State

Action

Next token prediction Ability to follow instructions aligned with human preferences⇏

Diagram Credit: Kianté Brantley

https://xkianteb.github.io/

29

Introduction To Reinforcement Learning

Decision-Making Agent
π

st = (y<t, x)

1

1 Agent observes user state

Actions From

𝒱

a1
t

a2
t

⋮
ak

t
π(at ∣ st) = ℙθRLHF (yt ∣ st)

2

2 Agent selects action based on user state

Response from LLM: at

3

3 Selected action is provided to user
rt = χ{user liked at}

4

4 User provides a response for agent to learn

30

Introduction To Reinforcement Learning

Let be a finite-horizon Markov Decision Process (MDP) where where are the states
and actions, respectively, and is the length of each episode. We call the state-

transition probability and the reward function.

ℳ = {𝒮, 𝒜, r, 𝒫, H} 𝒮, 𝒜
H ∈ ℤ 𝒫 : 𝒮 × 𝒜 → Δ (𝒮)

r : 𝒮 × 𝒜 → ℝ

31

Introduction To Reinforcement Learning

Let be a finite-horizon Markov Decision Process (MDP) where where are the states
and actions, respectively, and is the length of each episode. We call the state-

transition probability and the reward function.

ℳ = {𝒮, 𝒜, r, 𝒫, H} 𝒮, 𝒜
H ∈ ℤ 𝒫 : 𝒮 × 𝒜 → Δ (𝒮)

r : 𝒮 × 𝒜 → ℝ

Vπ(s) = 𝔼 [
H

∑
h=0

r(sh, ah) ∣ s0 = s, ah ∼ π(⋅ ∣ sh)]

Qπ(s, a) = 𝔼 [
H

∑
h=0

r(sh, ah) ∣ s0 = s, a0 = a, ah ∼ π(⋅ ∣ sh)]

Value Function (State-value)

Q-function (Action-value)

32

Introduction To Reinforcement Learning

Let be a finite-horizon Markov Decision Process (MDP) where where are the states
and actions, respectively, and is the length of each episode. We call the state-

transition probability and the reward function.

ℳ = {𝒮, 𝒜, r, 𝒫, H} 𝒮, 𝒜
H ∈ ℤ 𝒫 : 𝒮 × 𝒜 → Δ (𝒮)

r : 𝒮 × 𝒜 → ℝ

Vπ
h (s) = 𝔼 [

H

∑
t=h

rt(st, at) ∣ sh = s, at ∼ πt(st)]

Qπ
h (s, a) = 𝔼 [

H

∑
t=h

rt(st, at) ∣ sh = s, ah = a, at ∼ πt(st)]

Value Function (State-value)

Q-function (Action-value)

Useful Identity For Later (Bellman Equations)

Qπ(s, a) = 𝔼 [
H

∑
h=0

r(sh, ah) ∣ s0 = s, a0 = a, ah ∼ π(⋅ ∣ sh)]
= r(s0, a0) + ∑

(s′ ,a′)∈𝒮×𝒜

𝒫(s′ ∣ s0, a0)π(a′ ∣ s′)r(s′ , a′)

= r(s0, a0) + 𝔼s′ ∼𝒫(⋅∣s0,a0)V(s′)

33

Objective of Reinforcement Learning
argmaxθ∈Θ J(θ) = 𝔼τ∼Prπθ

μ [
H

∑
h=0

r(sh, ah) ∣ , s0 ∼ μ0(𝒮)]
where , , and .τ = {(sh, ah, r(sh, ah)}H

h=0
R(τ) =

H

∑
h=0

r(sh, ah) Prπθ
μ = μ0(s0)πθ(a0 ∣ s0)𝒫 (s1 ∣ s0, a0)⋯

Let’s try to compute the gradient so we can use gradient ascent

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

= 𝔼τ∼Prπθ
μ [R(τ) ∣ , s0 ∼ μ0(𝒮)] = ∑

τ

Prπθ
μ (τ) R(τ)

= ∑
τ

R(τ)∇θPrπθ
μ (τ) = ∑

τ

R(τ)Prπθ
μ (τ)∇θPrπθ

μ (τ)/Prπθ
μ (τ)

= ∑
τ

R(τ)Prπθ
μ (τ)∇θlog Prπθ

μ (τ)

= 𝔼τ∼Prπθ
μ [R(τ)∇θlog Prπθ

μ (τ) ∣ , s0 ∼ μ0(𝒮)]

34

Objective of Reinforcement Learning
∇θlog Prπθ

μ (τ) = ∇θ log
H

∏
h=0

πθ (ah ∣ sh) 𝒫 (sh+1 ∣ sh, ah) = ∇θ

H

∑
h=0

[log πθ (ah ∣ sh) + log 𝒫 (sh+1 ∣ sh, ah)]

=
H

∑
h=0

[∇θlog πθ (ah ∣ sh) + ∇θlog 𝒫 (sh+1 ∣ sh, ah)]

=
H

∑
h=0

∇θlog πθ (ah ∣ sh)

35

Objective of Reinforcement Learning
argmaxθ∈Θ J(θ) = 𝔼τ∼Prπθ

μ [
H

∑
h=0

r(sh, ah) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ [R(τ) ∣ , s0 ∼ μ0(𝒮)]

where , , and .τ = {(sh, ah, r(sh, ah)}H
h=0

R(τ) =
H

∑
h=0

r(sh, ah) Prπθ
μ = μ0(s0)πθ(a0 ∣ s0)𝒫 (s1 ∣ s0, a0)⋯

Let’s try to compute the gradient so we can use gradient ascent

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

R(τ)∇θPrπθ
μ (τ) = ∑

τ

R(τ)Prπθ
μ (τ)∇θPrπθ

μ (τ)/Prπθ
μ (τ)

= 𝔼τ∼Prπθ
μ [R(τ)∇θlog Prπθ

μ (τ) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [R(τ)

H

∑
h=0

∇θlog πθ (ah ∣ sh) ∣ , s0 ∼ μ0(𝒮)]

36

Objective of Reinforcement Learning
argmaxθ∈Θ J(θ) = 𝔼τ∼Prπθ

μ [
H

∑
h=0

r(sh, ah) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ [R(τ) ∣ , s0 ∼ μ0(𝒮)]

where , , and .τ = {(sh, ah, r(sh, ah)}H
h=0

R(τ) =
H

∑
h=0

r(sh, ah) Prπθ
μ = μ0(s0)πθ(a0 ∣ s0)𝒫 (s1 ∣ s0, a0)⋯

Let’s try to compute the gradient so we can use gradient ascent

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

R(τ)∇θPrπθ
μ (τ) = ∑

τ

R(τ)Prπθ
μ (τ)∇θPrπθ

μ (τ)/Prπθ
μ (τ)

= 𝔼τ∼Prπθ
μ [R(τ)∇θlog Prπθ

μ (τ) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [R(τ)

H

∑
h=0

∇θlog πθ (ah ∣ sh) ∣ , s0 ∼ μ0(𝒮)]

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

37

Objective of Reinforcement Learning
argmaxθ∈Θ J(θ) = 𝔼τ∼Prπθ

μ [
H

∑
h=0

r(sh, ah) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ [R(τ) ∣ , s0 ∼ μ0(𝒮)]

where , , and .τ = {(sh, ah, r(sh, ah)}H
h=0

R(τ) =
H

∑
h=0

r(sh, ah) Prπθ
μ = μ0(s0)πθ(a0 ∣ s0)𝒫 (s1 ∣ s0, a0)⋯

Let’s try to compute the gradient so we can use gradient ascent

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

R(τ)∇θPrπθ
μ (τ) = ∑

τ

R(τ)Prπθ
μ (τ)∇θPrπθ

μ (τ)/Prπθ
μ (τ)

= 𝔼τ∼Prπθ
μ [R(τ)∇θlog Prπθ

μ (τ) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [R(τ)

H

∑
h=0

∇θlog πθ (ah ∣ sh) ∣ , s0 ∼ μ0(𝒮)]

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

Impractical to compute this in practice! Relies
on understanding the initial state distribution,

the action selection by the policy, and the
dynamics of the MDP.

38

Objective of Reinforcement Learning
argmaxθ∈Θ J(θ) = 𝔼τ∼Prπθ

μ [
H

∑
h=0

r(sh, ah) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ [R(τ) ∣ , s0 ∼ μ0(𝒮)]

where , , and .τ = {(sh, ah, r(sh, ah)}H
h=0

R(τ) =
H

∑
h=0

r(sh, ah) Prπθ
μ = μ0(s0)πθ(a0 ∣ s0)𝒫 (s1 ∣ s0, a0)⋯

Let’s try to compute the gradient so we can use gradient ascent

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

R(τ)∇θPrπθ
μ (τ) = ∑

τ

R(τ)Prπθ
μ (τ)∇θPrπθ

μ (τ)/Prπθ
μ (τ)

= 𝔼τ∼Prπθ
μ [R(τ)∇θlog Prπθ

μ (τ) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [R(τ)

H

∑
h=0

∇θlog πθ (ah ∣ sh) ∣ , s0 ∼ μ0(𝒮)]

39

Objective of Reinforcement Learning
argmaxθ∈Θ J(θ) = 𝔼τ∼Prπθ

μ [
H

∑
h=0

r(sh, ah) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ [R(τ) ∣ , s0 ∼ μ0(𝒮)]

where , , and .τ = {(sh, ah, r(sh, ah)}H
h=0

R(τ) =
H

∑
h=0

r(sh, ah) Prπθ
μ = μ0(s0)πθ(a0 ∣ s0)𝒫 (s1 ∣ s0, a0)⋯

Let’s try to compute the gradient so we can use gradient ascent

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

R(τ)∇θPrπθ
μ (τ) = ∑

τ

R(τ)Prπθ
μ (τ)∇θPrπθ

μ (τ)/Prπθ
μ (τ)

= 𝔼τ∼Prπθ
μ [R(τ)∇θlog Prπθ

μ (τ) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [R(τ)

H

∑
h=0

∇θlog πθ (ah ∣ sh) ∣ , s0 ∼ μ0(𝒮)]
No need to understand the dynamics of the
MDP or the initial state distribution. Simply
sample trajectories from the current policy,

compute the log of the gradient, do a Monte-
Carlo estimate of the expectation, and update

the policy via gradient ascent

This is called REINFORCE

40

Issues With REINFORCE

Reward = 1
1+Manhattan (),

α β− 1
1+Manhattan (),

41

Issues With REINFORCE

Reward = 1
1+Manhattan (),

α β− 1
1+Manhattan (),

42

Issues With REINFORCE

Reward =

Reward =
1
4

α −
1
9

β

1
1+Manhattan (),

α β− 1
1+Manhattan (),

43

Issues With REINFORCE

1
1+Manhattan (),

α β− 1
1+Manhattan (),

Reward =

44

Issues With REINFORCE

Reward =

Reward =
1
8

α −
1
2

β

1
1+Manhattan (),

α β− 1
1+Manhattan (),

1
1+Manhattan (),

α β− 1
1+Manhattan (),

45

Issues With REINFORCE

Reward =

Reward =
1
8

α −
1
2

β

Just like a lot of Monte-Carlo sampling
methods, REINFORCE is prone to high

variance in the gradient estimates!

46

All You Need Is A Baseline!
Consider a function where the samples used to construct are independent of . Then, notice thatf : 𝒮 → ℝ f τ

𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh)
H

∑
h′ =0

f(sh′) ∣ , s0 ∼ μ0(𝒮)] =
H

∑
h=0

∫τ (
H

∑
h′ =0

f(sh′)) πθ (ah ∣ sh)∇θlog πθ (ah ∣ sh) dτ

=
H

∑
h=0 (

H

∑
h′ =0

f(sh′))∫τ
πθ (ah ∣ sh)∇θlog πθ (ah ∣ sh) dτ

=
H

∑
h=0 (

H

∑
h′ =0

f(sh′))∫τ
∇θπθ (ah ∣ sh) dτ

=
H

∑
h=0 (

H

∑
h′ =0

f(sh′))∇θ ∫τ
πθ (ah ∣ sh) dτ

= 0

𝔼τ∼Prπθ
μ [R(τ)

H

∑
h=0

∇θlog πθ (ah ∣ sh) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′ =0

r(sh′ , ah′) − f(sh′)) ∣ , s0 ∼ μ0(𝒮)⟹

47

All You Need Is A Baseline!
𝔼τ∼Prπθ

μ [
H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′ =0

r(sh′ , ah′) − f(sh′)) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
h−1

∑
h′ =0

r(sh′ , ah′) − f(sh′)) ∣ , s0 ∼ μ0(𝒮)] 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′ =h

r(sh′ , ah′) − f(sh′)) ∣ , s0 ∼ μ0(𝒮)]+

If we want to understand the influence of taking action at state ,
we do not care about the past i.e. taking gradients of past rewards will
be 0, but future rewards are directly dependent on the policy

ah sh

⟹ 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′ =0

r(sh′ , ah′) − f(sh′)) ∣ , s0 ∼ μ0(𝒮)] 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′ =h

r(sh′ , ah′) − f(sh′)) ∣ , s0 ∼ μ0(𝒮)]=

48

Advantage Actor-Critic (A2C)
Take as our baseline. Then we havef(s) = Vπprev

θ (s)

=𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′ =h

r(sh′ , ah′) − f(sh′)) ∣ , s0 ∼ μ0(𝒮)] 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′ =h

r(sh′ , ah′) − Vπprev
θ (sh′)) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) A(sh, ah) ∣ , s0 ∼ μ0(𝒮)]

where A(sh, ah) =
H

∑
h′ =h

r(sh′ , ah′) − Vπprev
θ (sh′) = Q(sh, ah) − V(sh)

Do we need to learn both?

49

Advantage Actor-Critic (A2C)
Take as our baseline. Then we havef(s) = Vπprev

θ (s)

=𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′ =h

r(sh′ , ah′) − f(sh′)) ∣ , s0 ∼ μ0(𝒮)] 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′ =h

r(sh′ , ah′) − Vπprev
θ (sh′)) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) A(sh, ah) ∣ , s0 ∼ μ0(𝒮)]

where A(sh, ah) =
H

∑
h′ =h

r(sh′ , ah′) − Vπprev
θ (sh′) = Q(sh, ah) − V(sh)

Do we need to learn both?

Recall our identity

Qπ(s, a) = r(s0, a0) + 𝔼s′ ∼𝒫(⋅∣s0,a0)V(s′)

50

Take as our baseline. Then we havef(s) = Vπprev
θ (s)

𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′ =h

r(sh′ , ah′) − f(sh′)) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′ =h

r(sh′ , ah′) − Vπprev
θ (sh′)) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) A(sh, ah) ∣ , s0 ∼ μ0(𝒮)]

Recall our identity

Qπ(s, a) = r(s0, a0) + 𝔼s′ ∼𝒫(⋅∣s0,a0)V(s′)

where A(sh, ah) =
H

∑
h′ =h

r(sh′ , ah′) − Vπprev
θ (sh′) = Q(sh, ah) − V(sh)

= r(sh, ah) + V(sh+1) − V(sh)

It is sufficient to learn the
reward model + the value

function

Advantage Actor-Critic (A2C)

51

Other Policy Gradient Algorithms

Trust-Region Policy Optimization (TRPO): maxθ 𝔼τ∼Pr
πθh
μ

∞

∑
h=0

Aπθh(sh, ah) : DKL (Prπθh
μ | |PrπθSFT

μ) ≤ δ

Proximal Policy Optimization (PPO): maxθ 𝔼τ∼Pr
πθh
μ

∞

∑
h=0

Aπθh(sh, ah) : sups∈𝒮 | |πθh (⋅ ∣ s) − πθSFT (⋅ ∣ s) | |TV ≤ δ

52

Other Policy Gradient Algorithms

Trust-Region Policy Optimization (TRPO):

Proximal Policy Optimization (PPO):

maxθ 𝔼τ∼Pr
πθh
μ

∞

∑
h=0

Aπθh(sh, ah) : DKL (Prπθh
μ | |PrπθSFT

μ) ≤ δ

maxθ 𝔼τ∼Pr
πθh
μ

∞

∑
h=0

Aπθh(sh, ah) : sups∈𝒮 | |πθh (⋅ ∣ s) − πθSFT (⋅ ∣ s) | |TV ≤ δ

L(θ) = 𝔼τ∼Pr
πθh
μ

∞

∑
h=0

min (
πθh

(a |s)
πSFT(a |s)

Aπθh(sh, ah), clip(
πθh

(a |s)
πSFT(a |s)

; 1 − ϵ,1 + ϵ)Aπθh(sh, ah))

This can be approximated as

53

DeepSeek-R1: How Does This Relate?

LGRPO(θ) = 𝔼q∼P(Q)𝔼τ∼Pr
πθold
μ

∞

∑
h=0

min (
πθold

(a |s)
πSFT(a |s)

Aπθh(sh, ah), clip(
πθold

(a |s)
πSFT(a |s)

; 1 − ϵ,1 + ϵ)Aπθh(sh, ah))

One of the many innovative things that R1 does is called Group-Relative Policy Optimization (GRPO)

where we compute the advantage as follows: for a group of sampled trajectories ,Aπθh(sh, ah) G {τi}G
i=1

Aπθh(sh, ah) =
R(τh) − 1

G ∑G
i=1 R(τi)

1
G ∑G

i=1 (R(τi) − 1
G ∑G

j=1 R(τj))2 + η

Doing this allows us to circumvent training a value-function model!

54

Summary of RLHF

Diagram Credit: Foundations of Large Language Models by Xiao and
Zhu

55

Resources To Learn More

Comprehensive Overview of DeepSeek-R1

Reinforcement Learning: Theory and Algorithms

Foundations of Large Language Models

https://aman.ai/primers/ai/deepseek-R1/#group-relative-policy-optimization-grpo
https://rltheorybook.github.io/
https://arxiv.org/abs/2501.09223

