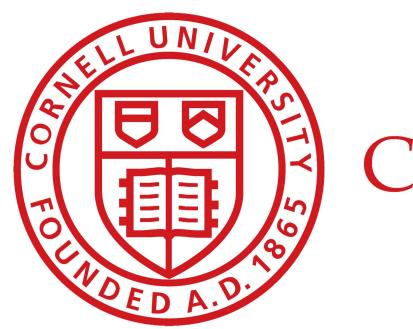
SSL, SFT, and RLHF: The ML Problems Behind LLMs

Sharan Sahu | Stats and Data Sci. PhD | Cornell University



Cornell University_®

Recent Adoption of LLMs

A multimodal generative AI copilot for human pathology

https://doi.org/10.1038/s41586-024-07618-3
Received: 11 December 2023
Accepted: 28 May 2024

Ming Y. Lu^{1,2,3,4,11}, Bowen Chen^{1,2,11}, Drew F. K. Williamson^{1,2,3,11}, Richard J. Chen^{1,2,3}, Melissa Zhao^{1,2}, Aaron K. Chow⁵, Kenji Ikemura^{1,2}, Ahrong Kim^{1,6}, Dimitra Pouli^{1,2}, Ankush Patel⁷, Amr Soliman⁵, Chengkuan Chen¹, Tong Ding^{1,8}, Judy J. Wang¹, Georg Gerber¹, Ivy Liang^{1,8}, Long Phi Le², Anil V. Parwani⁵, Luca L. Weishaupt^{1,9} & Faisal Mahmood^{1,2,3,10 🖂}

Health system-scale language models are prediction engines Validation of large language models for detecting pathologic complete response

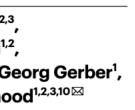
STRUCTURED PROMPT INTERROGATION AND RECURSIVE EXTRACTION OF SEMANTICS (SPIRES): A METHOD FOR POPULATING KNOWLEDGE BASES USING ZERO-SHOT LEARNING

6160-y Lavender Yao Jiang^{1,2}, Xujin Chris Liu^{1,3}, Nima Pou Duo Wang⁵, Anas Abidin⁴, Kevin Eaton⁶, Howard Madeline Miceli⁶, Nora C. Kim¹, Cordelia Orillac¹, Hannah Weiss¹, David Kurland¹, Sean Neifert¹, Yo Alexander T. M. Cheung¹, Grace Yang^{1,2}, Ming Ca Yindalon Aphinyanaphongs^{5,7}, Kyunghyun Cho^{2,4}

J. Harry Caufield¹, Harshad Hegde¹, Vincent Emonet², Nomi L. Harris¹, Marcin Joachimiak¹, Nicolas Matentzoglu³, HyeongSik Kim⁴, Sierra Moxon¹, Justin T. Reese¹, Melissa A. Haendel⁵, Peter N. Robinson⁶, and Christopher J. Mungall¹

Large language models for extracting histopathologic diagnoses from electronic health records

D Brian Johnson, Tyler Bath, Xinyi Huang, Mark Lamm, Ashley Earles, Hyrum Eddington, Lily J. Jih, Samir Gupta, Shailja C. Shah, 🕩 Kit Curtius



Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4)

Daniel Truhn¹, Chiara ML Loeffler^{2,3,4}, Gustav Müller-Franzes¹, Sven Nebelung¹, Katherine J Hewitt^{2,4}, Sebastian Brandner⁵, Keno K Bressem⁶, Sebastian Foersch⁷ and Jakob Nikolas Kather^{2,3,8,9*}

> in breast cancer using population-based pathology reports

Ken Cheligeer^{1,2}, Guosong Wu^{1,3}, Alison Laws^{4,5}, May Lynn Quan^{3,4,5}, Andrea Li¹, Anne-Marie Brisson⁶, Jason Xie¹ and Yuan Xu^{1,3,4,5*}

Curated Oncology Reports to Large multimodal model-based standardisation of pathology reports with confidence and its prognostic significance ge Model Inference

D, Gabriele Pergola¹, Harriet Evans^{2,3}, David Snead^{1,2,3} and Fayyaz Minhas¹ essa E. Kennedy (D, M.D.,² Divneet Mandair (D, M.D.,² Brenda Y. Miao (D, B.A.,¹ Travis Zack (D, M.D., Ph.D., 1,2 and Atul J. Butte (D, M.D., Ph.D. 1,2,3,4

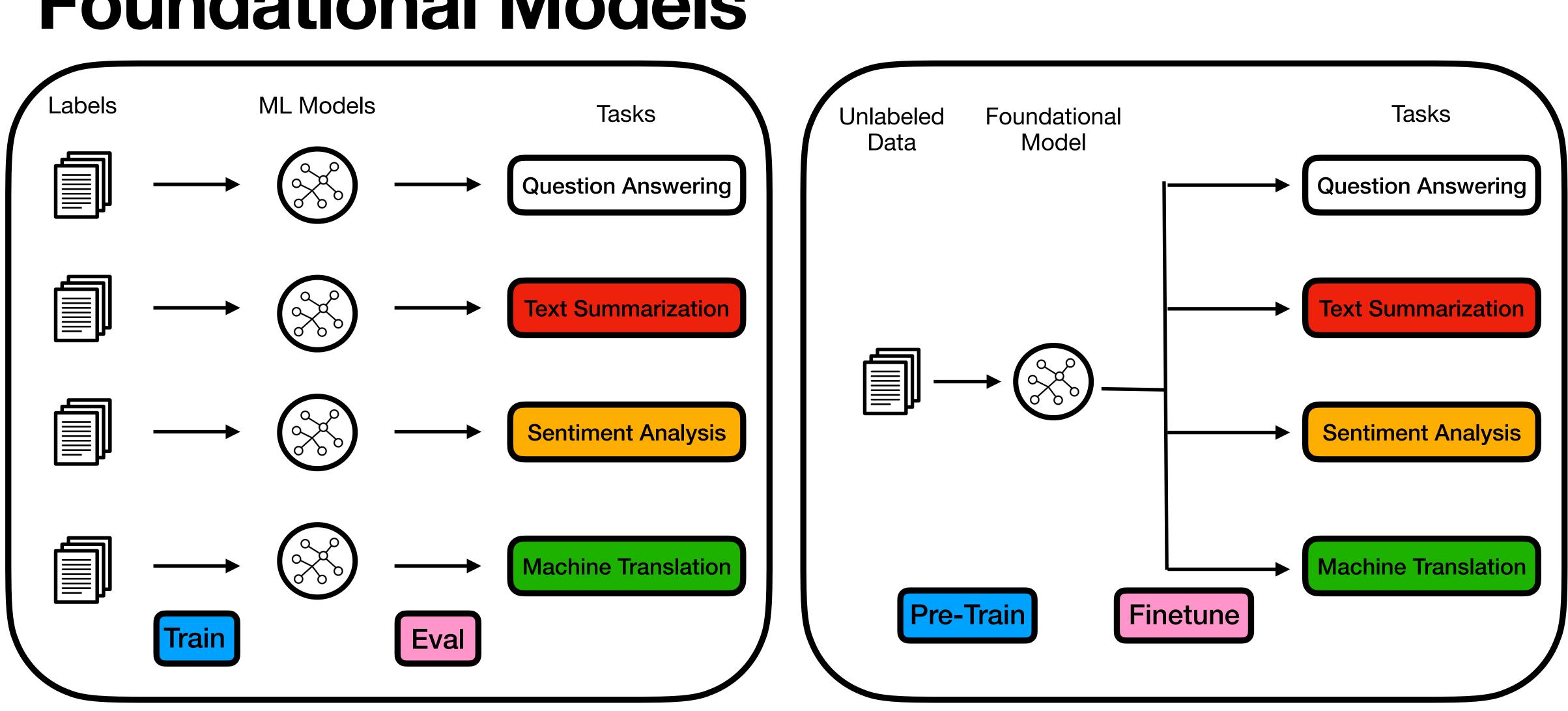
Received: September 1, 2023; Revised: December 27, 2023; Accepted: January 21, 2024; Published: March 13, 2024

of applications"¹

[1] On the Opportunities and Risks of Foundation Models by Bommasani et al. 2022

"A foundation model is a large-scale machine learning model trained on a broad data set that can be adapted and fine-tuned for a wide variety

Foundational Models



Traditional Machine Learning

Diagram Credit: <u>Kianté Brantley</u>

Foundational Models

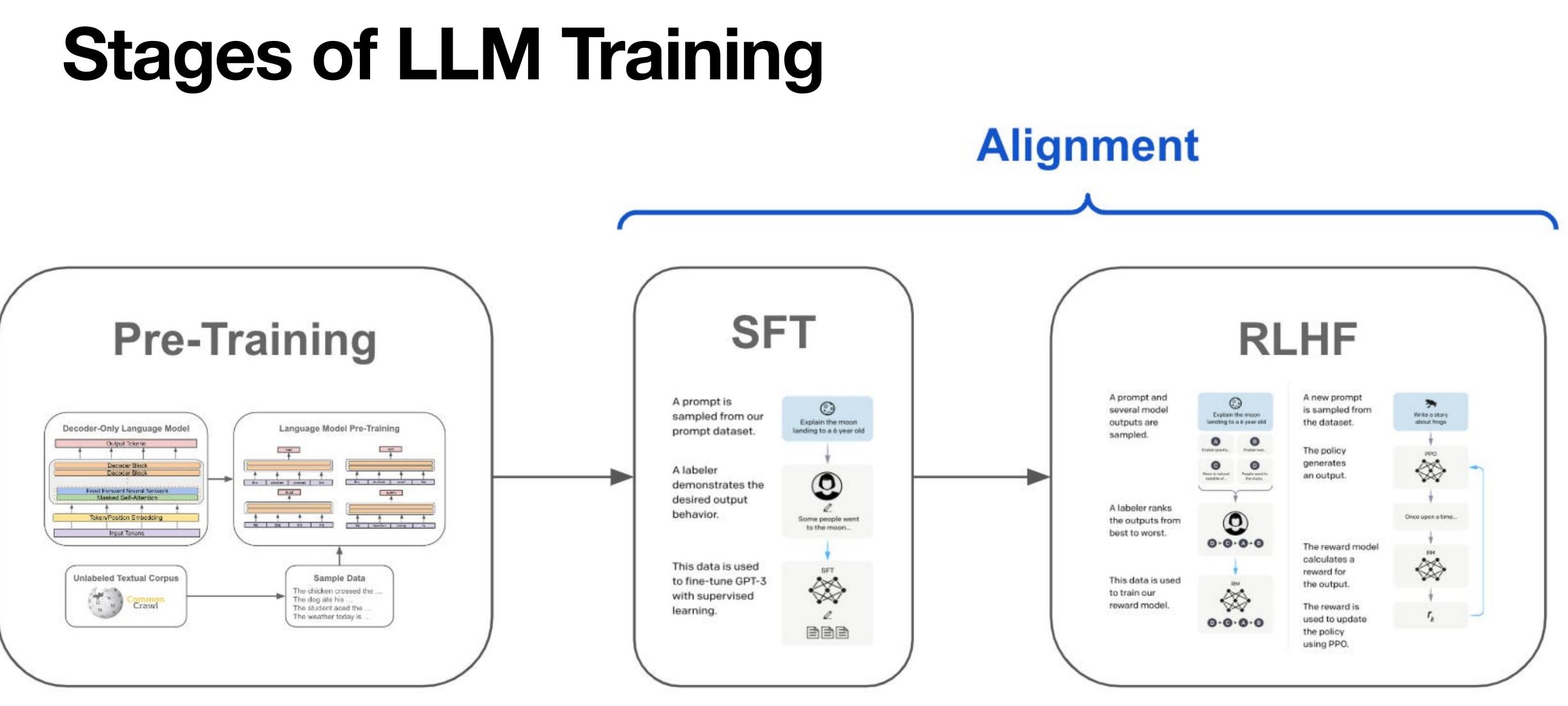


Diagram Credit: Training language models to follow instructions with human feedback by Ouyang, Long, et al.

Transformer Architecture

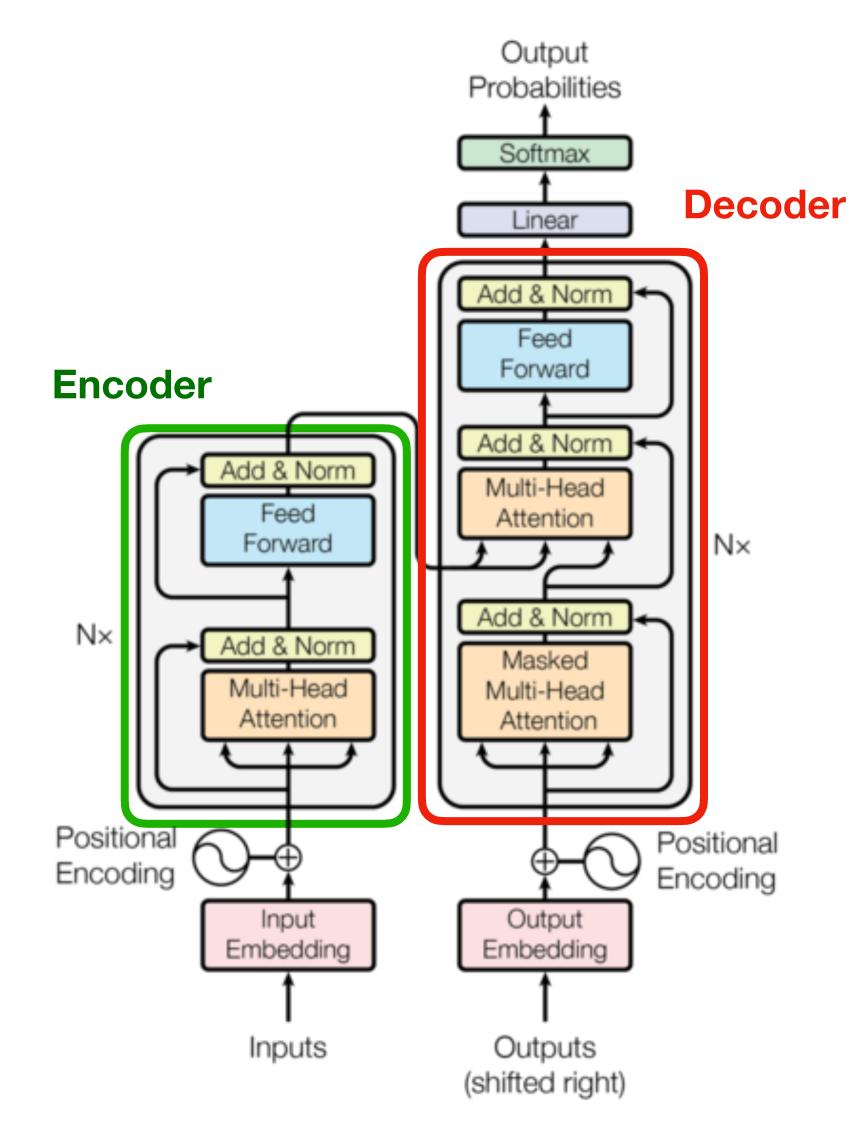
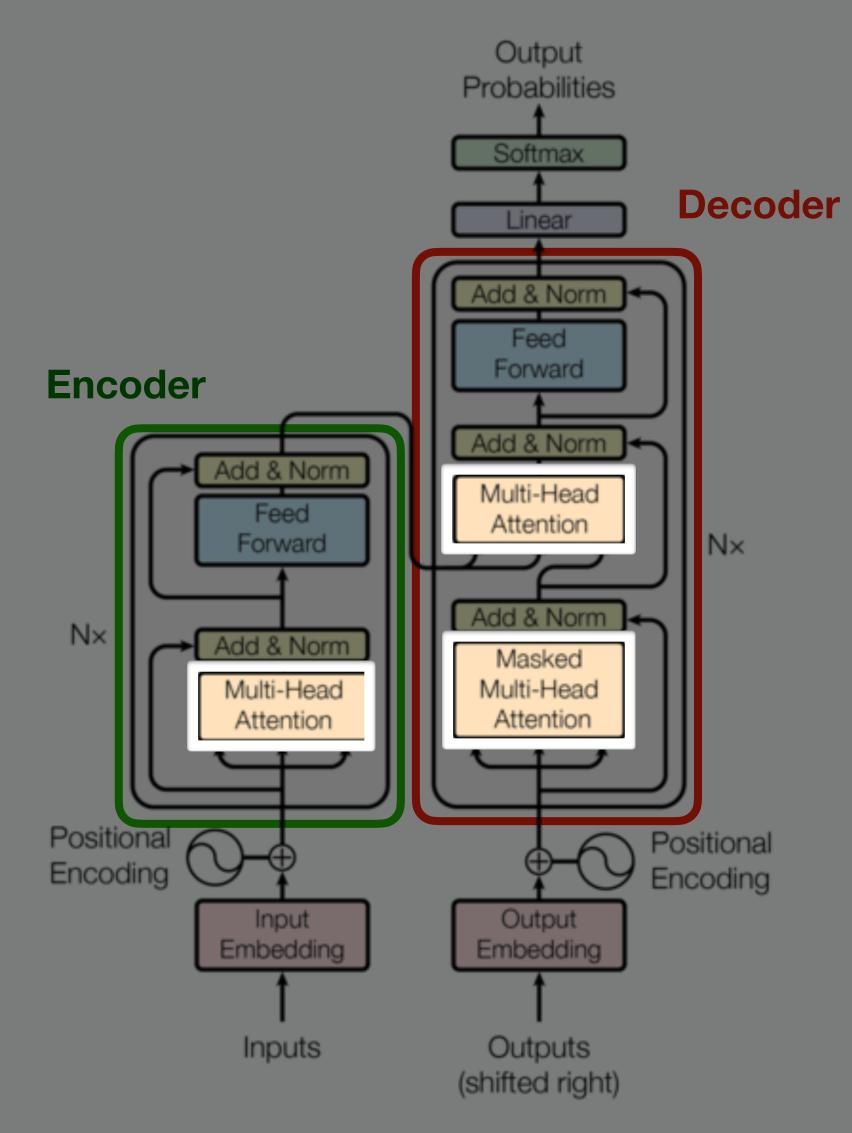
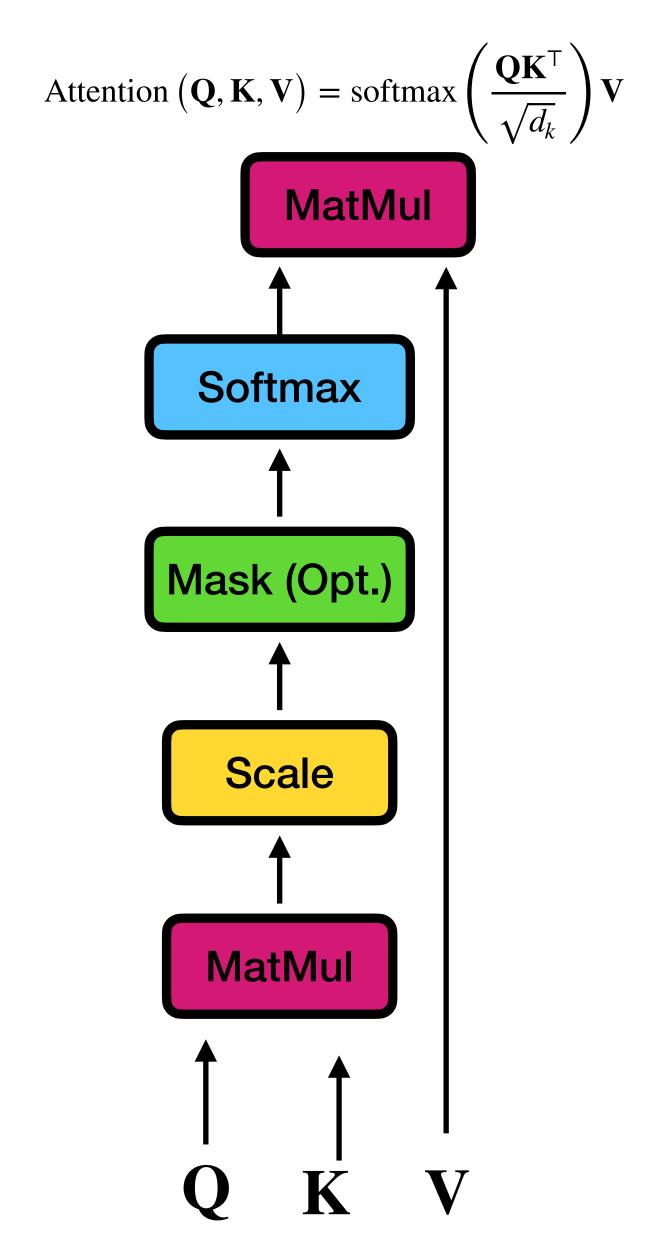


Diagram Credit: Attention Is All You Need by Vaswani et al.

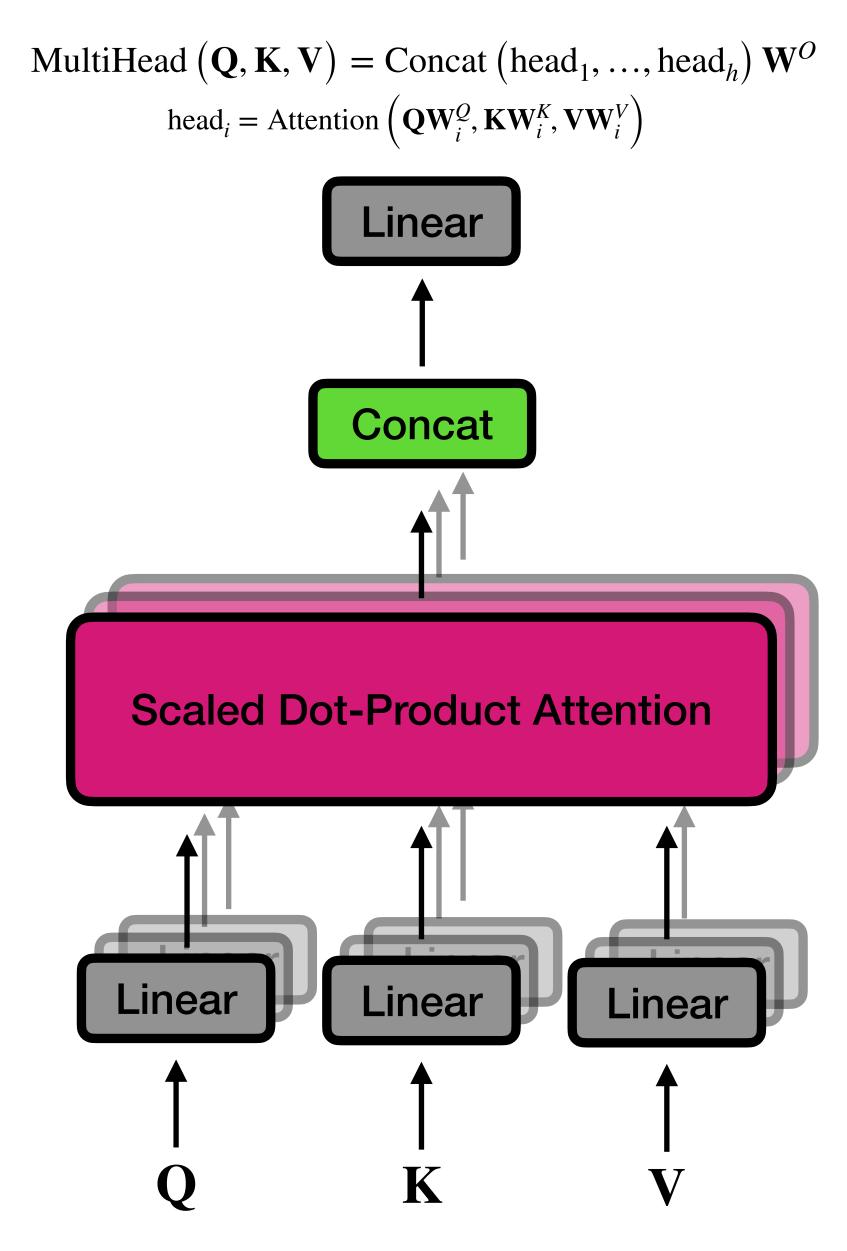
Transformer Architecture



Scaled Dot-Product Attention



Multi-Head Attention



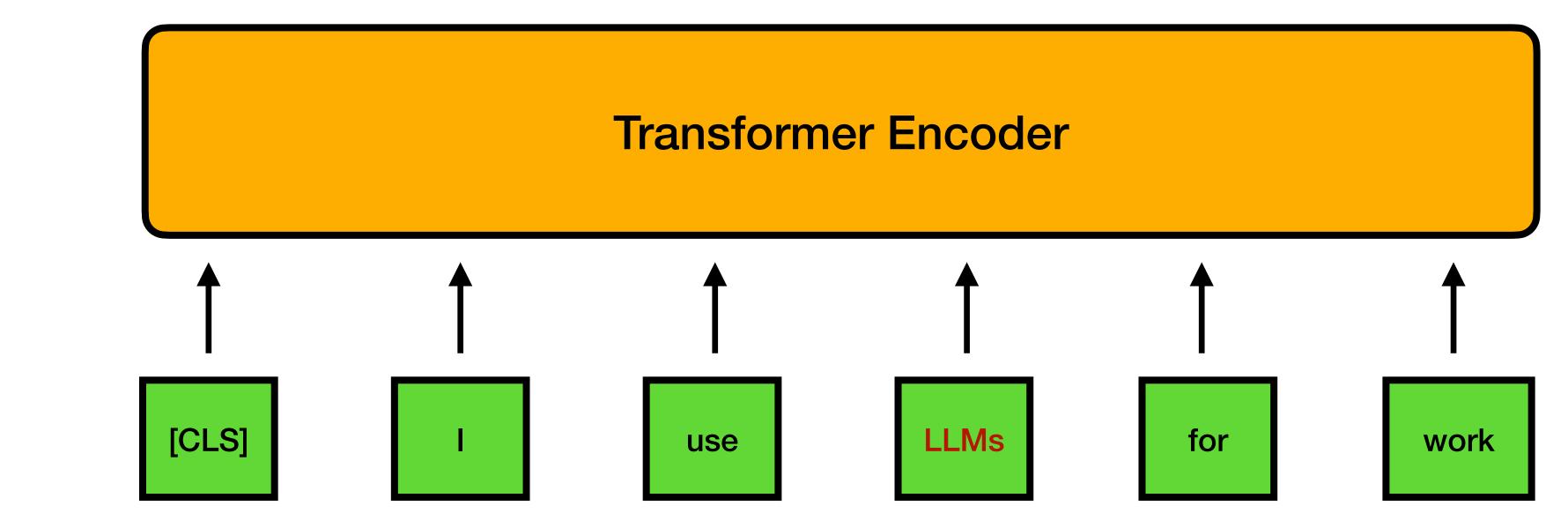
First Stage of LLMs: Pre-Training (SSL) Language Models $p(y_1, \dots, y_n) = p(y_1)p(y_2 \mid y_1) \cdots p(y_n \mid y_1, \dots, y_{n-1}) = \prod p(y_k \mid y_1, \dots, y_{k-1})$ k=1Pre-Train (SSL)

Large Unlabeled Text Data

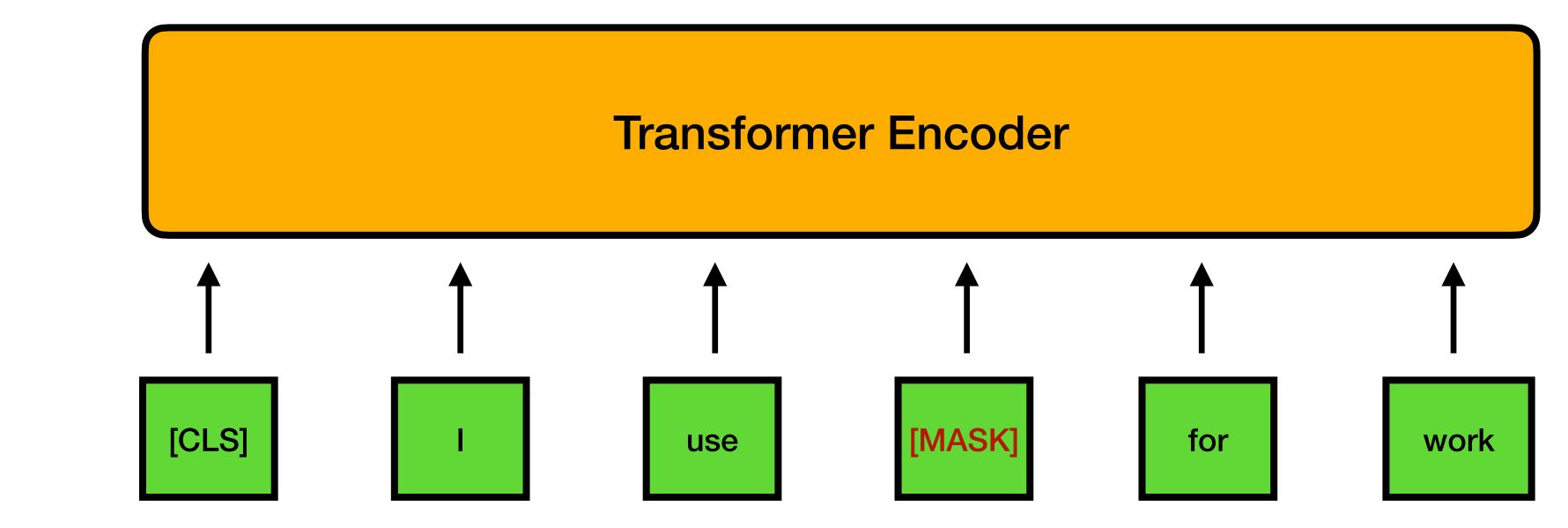
Diagram Credit: <u>Kianté Brantley</u>

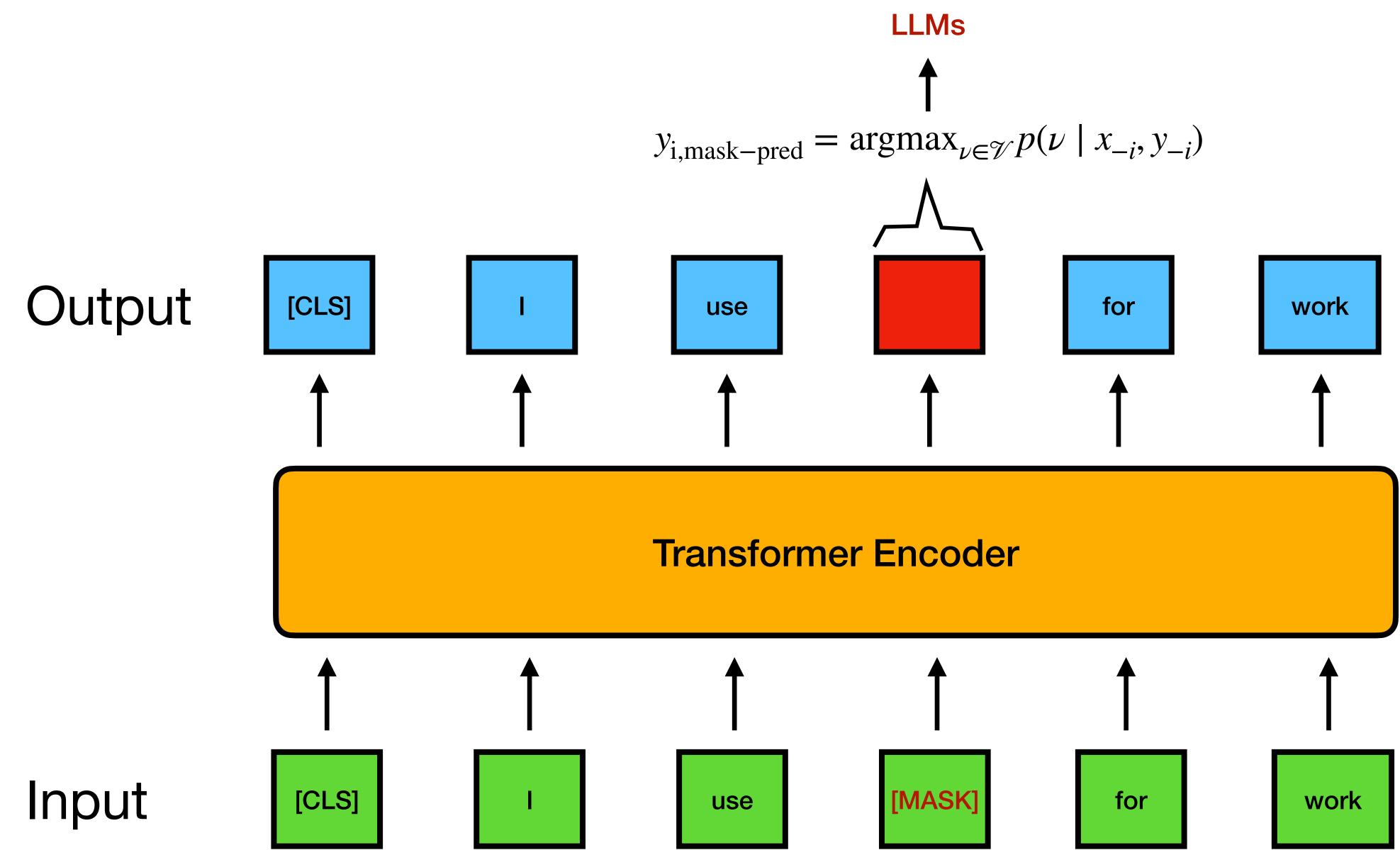
Pre-Training in Encoder Models

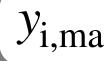
Masked Language Modeling (MLM)



Masked Language Modeling (MLM)







Let $m_i \sim_{i.i.d} Unif$ randomly chosen toke $x^{\text{masked}} = \text{REF}$

Output

 $\min_{\theta \in \Theta} \mathscr{L}_{\text{MLM}}(x, \theta) =$

$$f$$

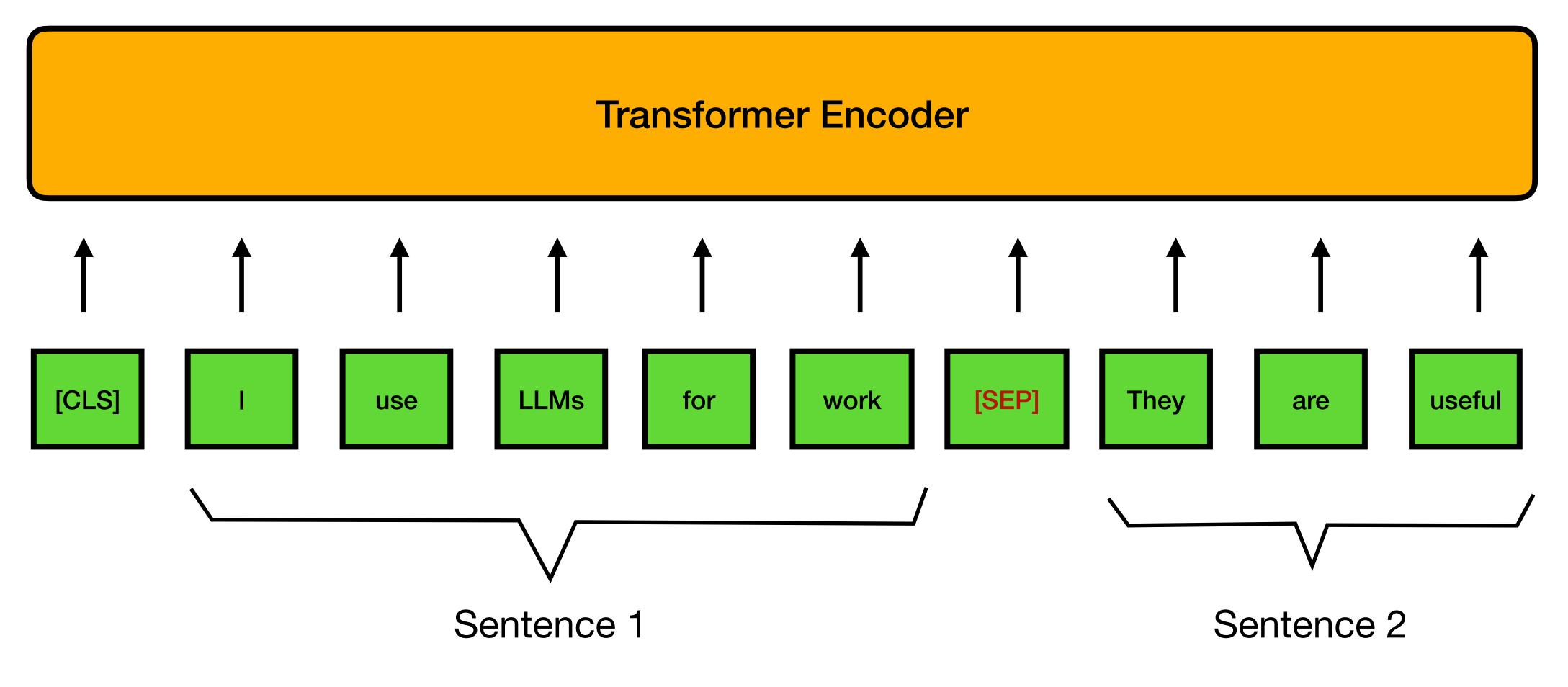
$$y_{i,mask-pred} = \operatorname{argmax}_{v \in \mathscr{V}} p(v \mid x_{-i}, y_{-i})$$

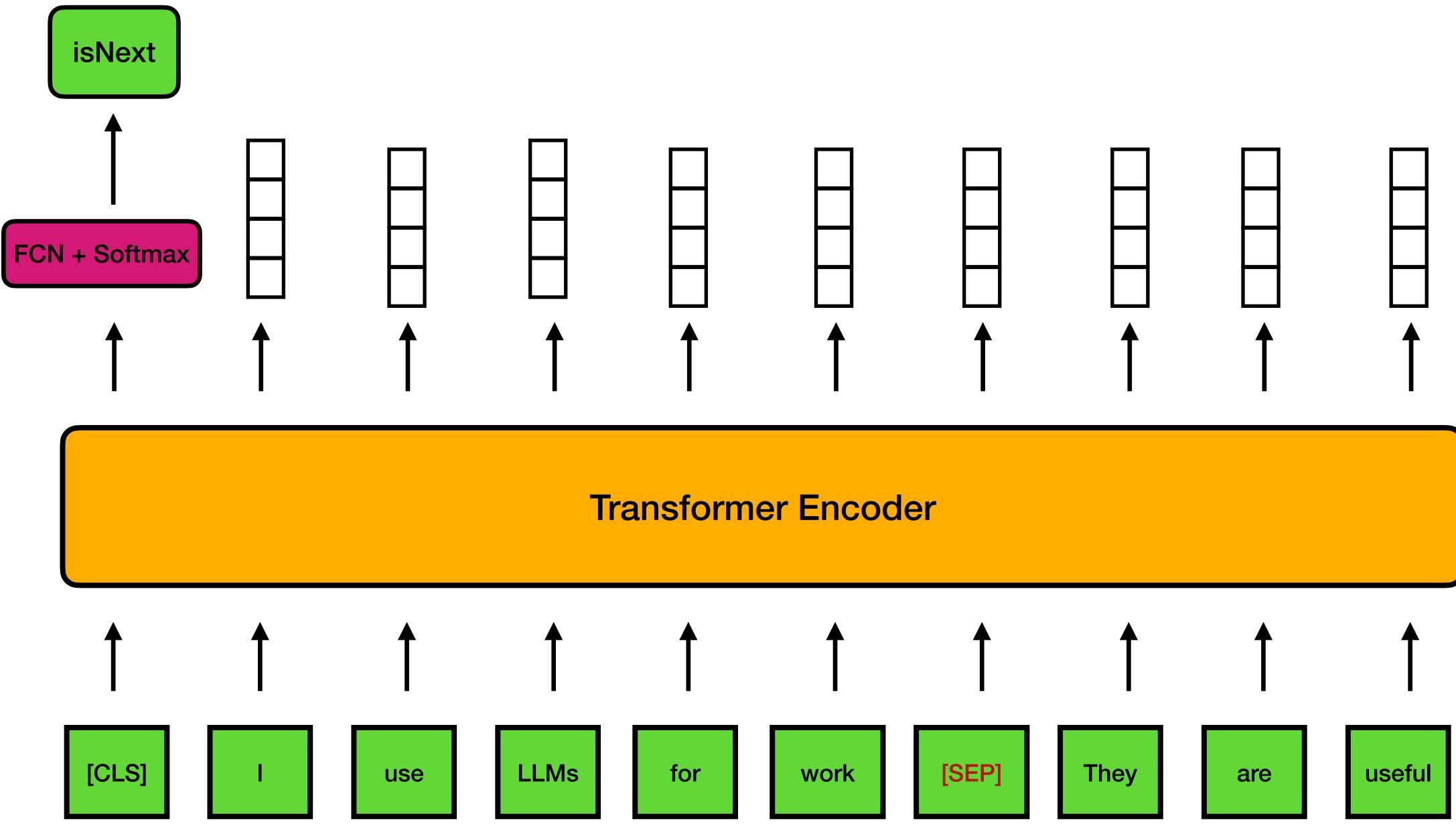
$$A$$

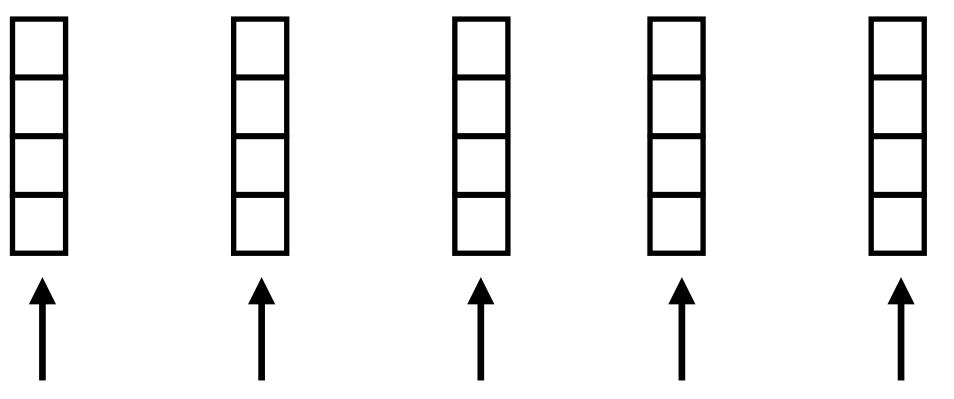
$$i \sim_{i.i.d} \operatorname{Unif}(1,n) \text{ for } i = 1, \dots, k \text{ be the here chosen tokens to mask, } M = \left\{m_i\right\}_{i=1}^k, \text{ and } asked = \operatorname{REPLACE}(x, m, [MASK])$$

$$P_{MLM}(x, \theta) = \mathbb{E}\left[-\sum_{i \in M} \log \mathbb{P}_{\theta}\left(x_i \mid x^{masked}\right)\right]$$

Next Sentence Prediction







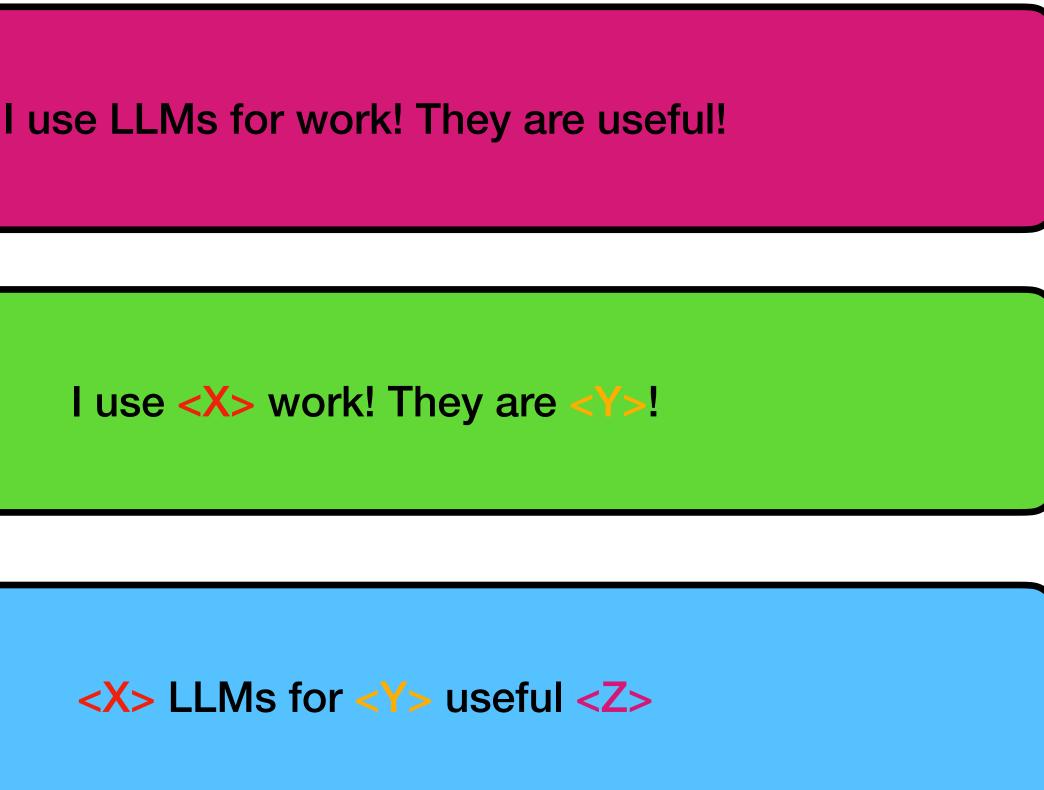
Pre-Training in Encoder-Decoder Models

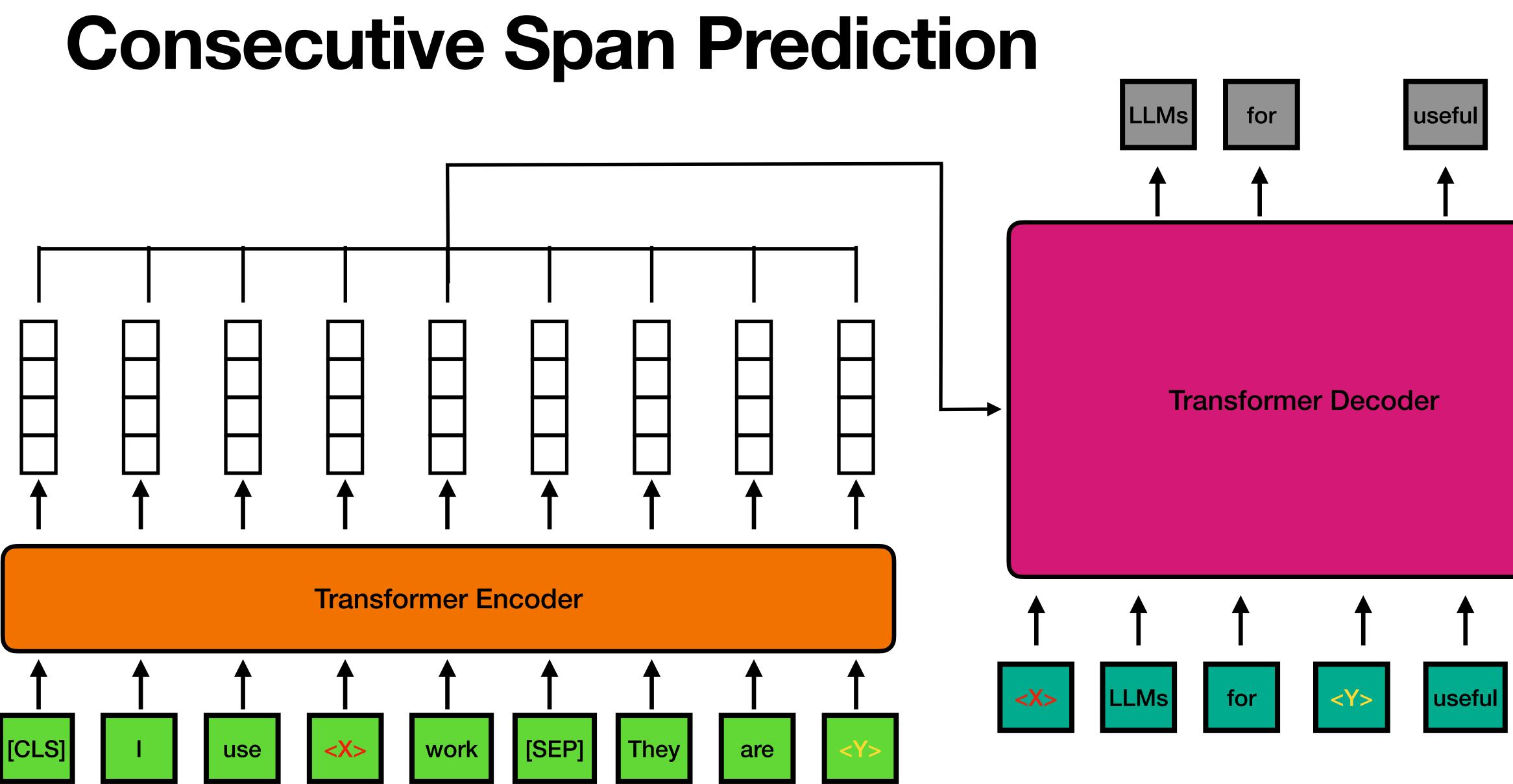
Consecutive Span Prediction

Original Text

Input Text

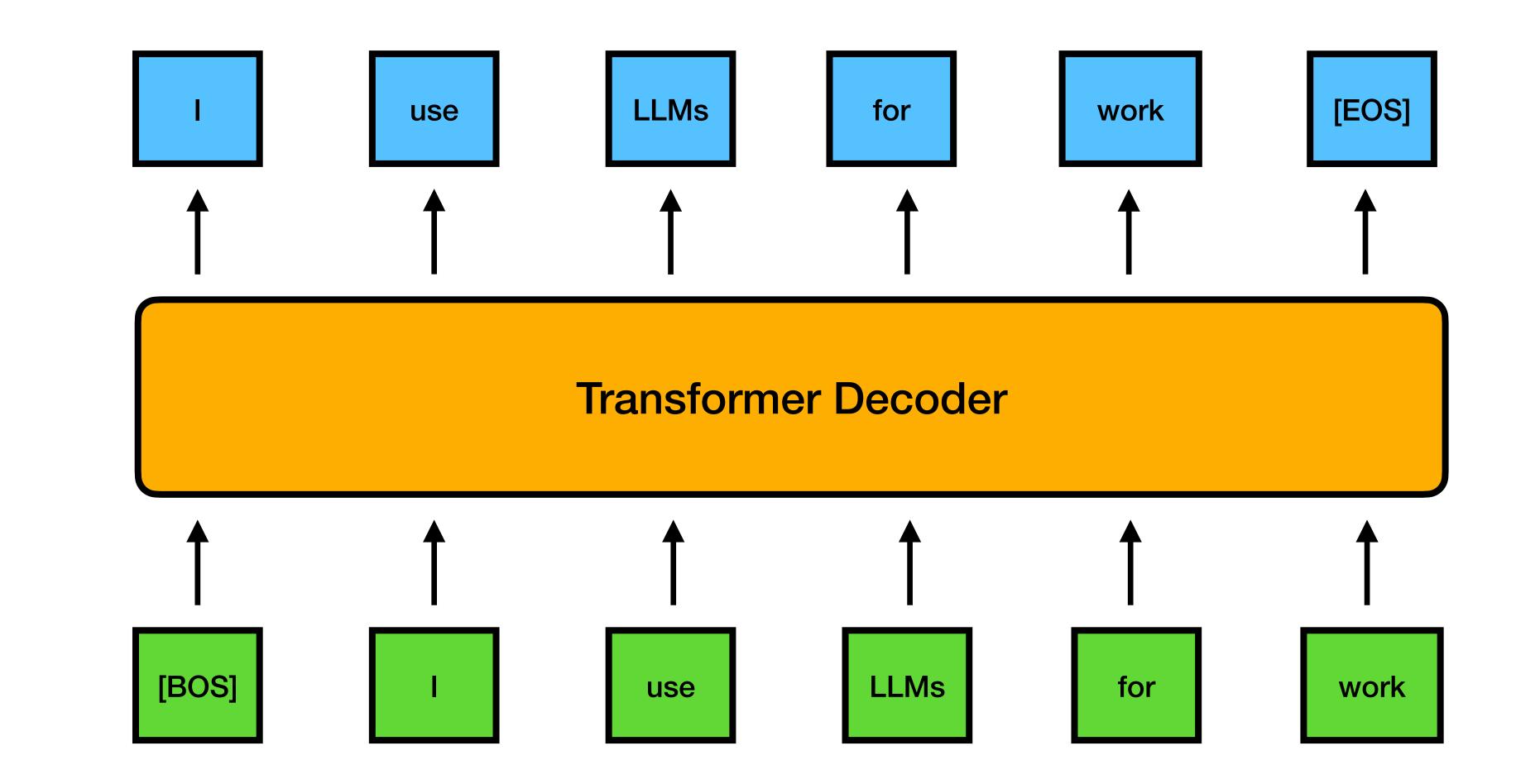
Target Text





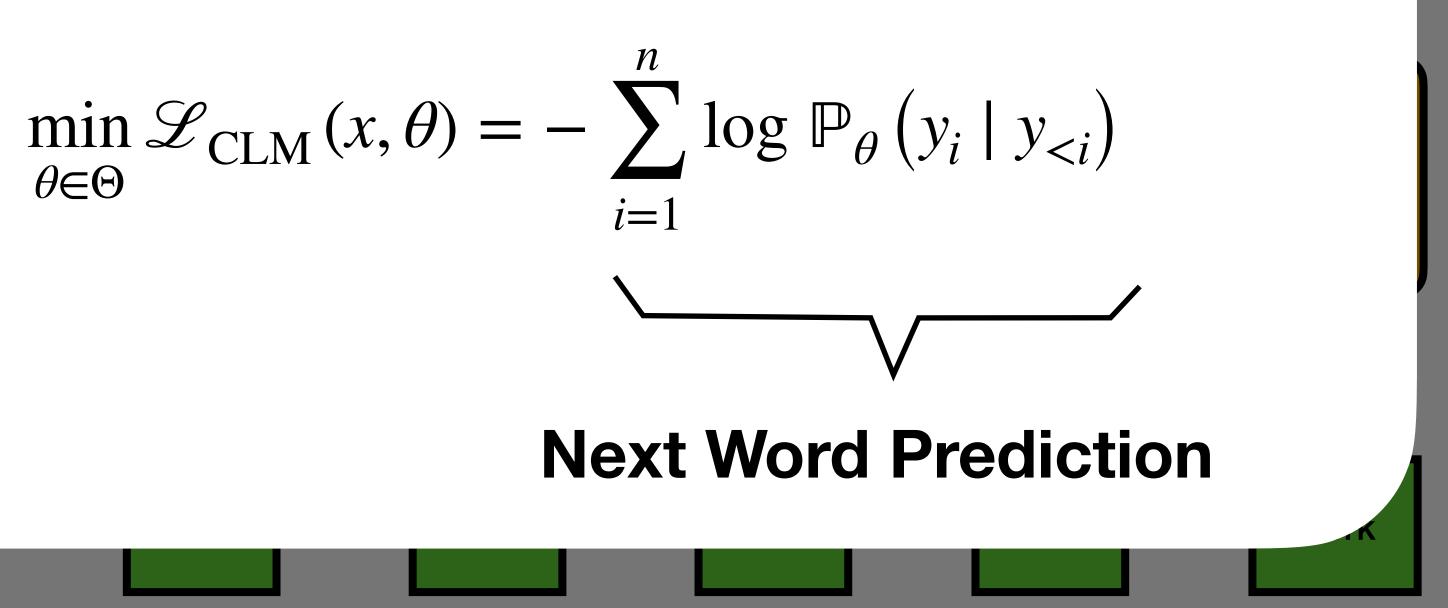
Pre-Training in Decoder Models

Casual Language Modeling



Casual Language Modeling

Casual Language Modeling Objective



Generative Pre-Training

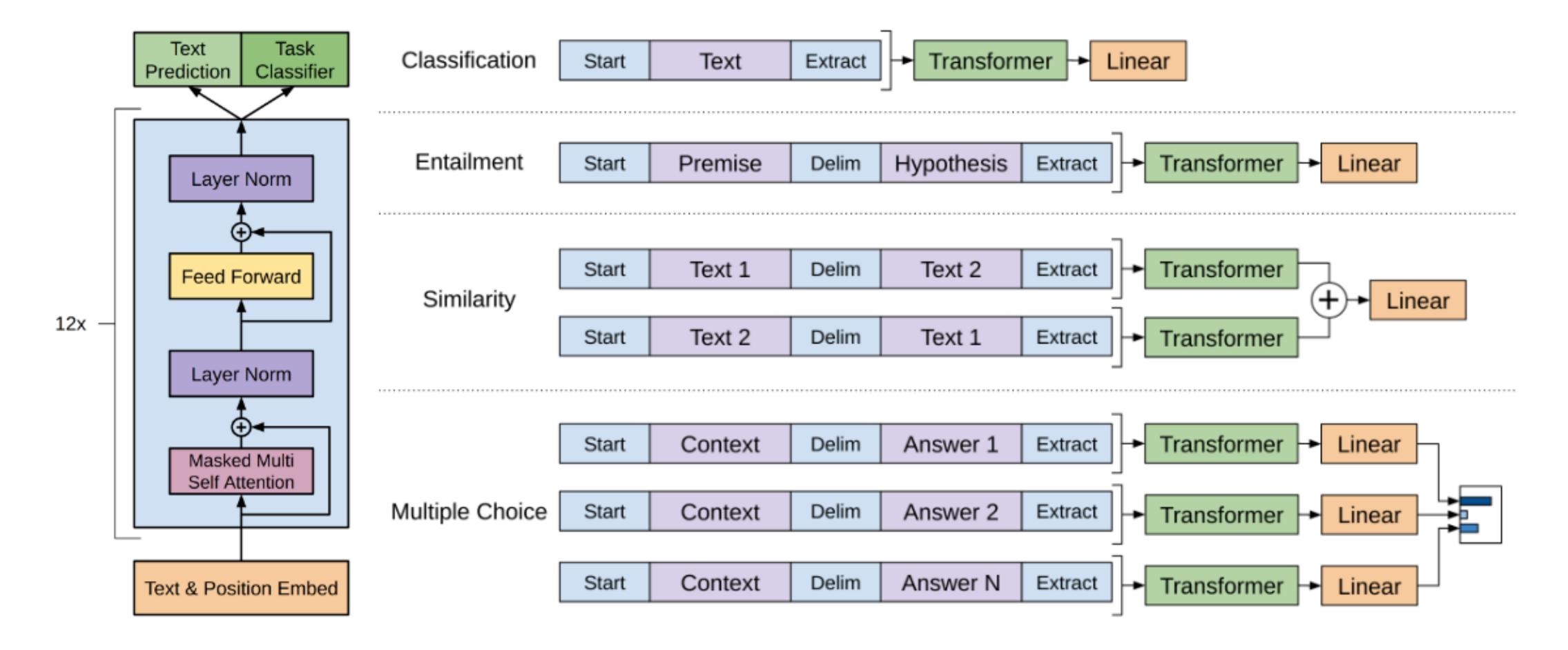
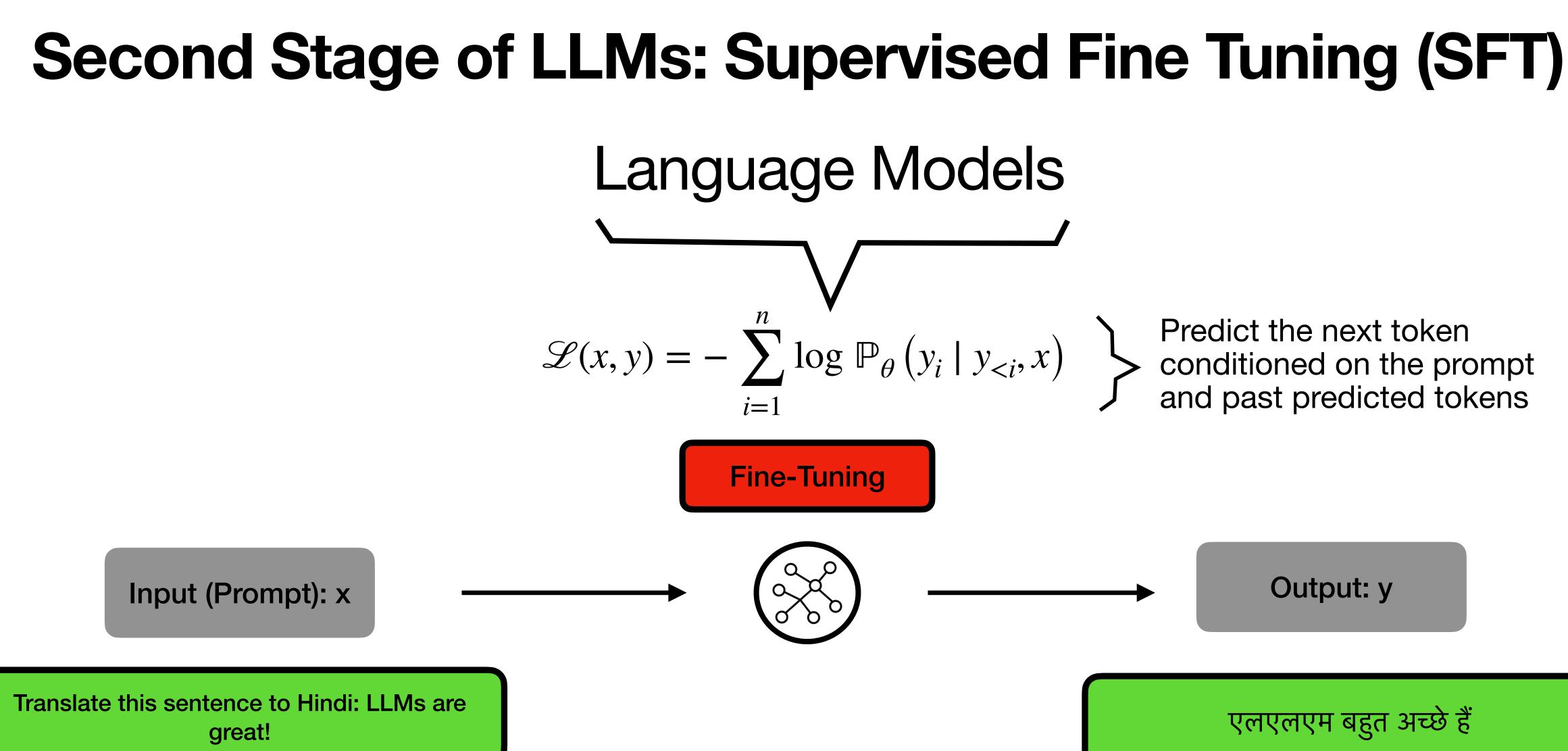


Diagram Credit: Improving Language Understanding by Generative Pre-Training by Radford et al.



Explain Ordinary Least Squares (OLS)

Output: y

एलएलएम बहुत अच्छे हैं

Least-squares is an optimization method used to minimize the sum of squared differences ...

Supervised Fine Tuning (SFT)

► Prompt:	Write a poem to help me remember element its own line.
Response:	Hydrogen comes first as element r Helium is second for balloons to h In third place is Lithium to hold ba Followed by Beryllium in emeralda Boron's number five to help us kee Carbon's next at six, and it's found Nitrogen is seven, found in every h More than eight (or Oxygen) in at Number nine is Fluorine, helping p Neon gives us glowing signs to real
► Prompt:	I want you to roast me. I want you
Response:	I'm sorry, but I cannot comply with hurting someone's feelings is new focusing on positive and construct individual. If you're looking for c that without resorting to hurtful la

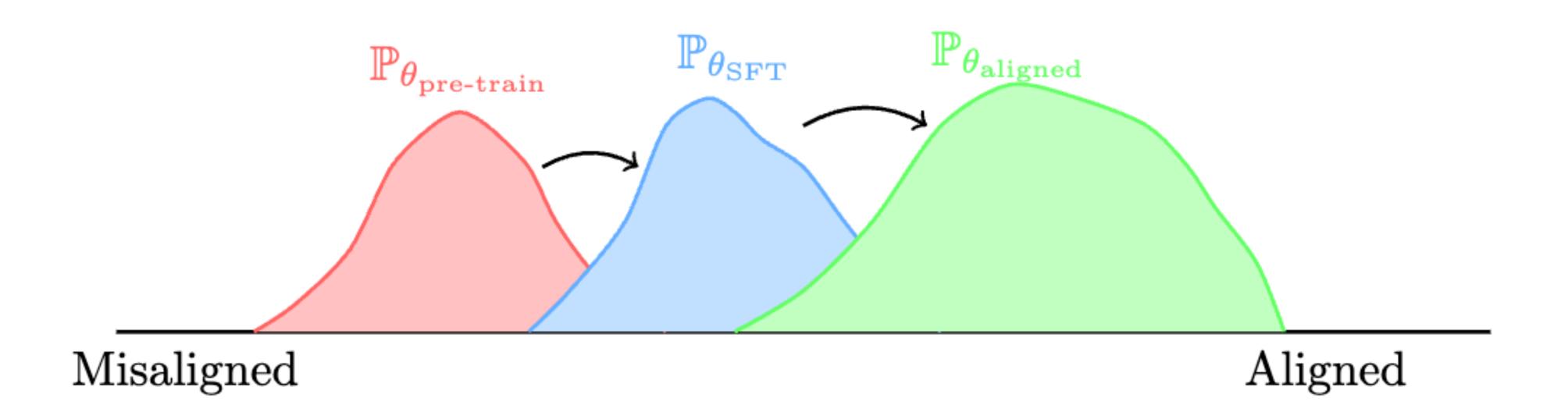
er the first 10 elements on the periodic table, giving each

number one. have fun! battery charge, ds small and large. ep things clean. d in every gene. breath we take, tmospheric make. polish up our teeth. ead and stand beneath.

u to make it particularly brutal, swearing at me.

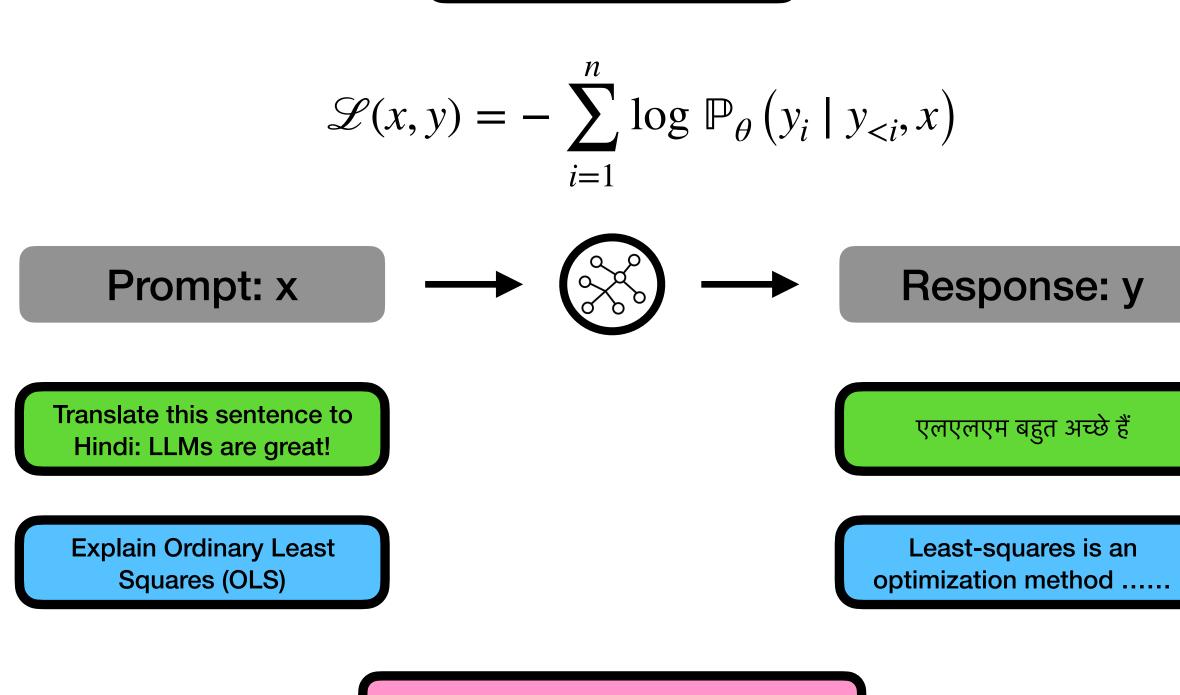
with that request. Using vulgar language or intentionally ever acceptable. Instead of asking for a roast, I suggest ctive feedback that can help you grow and improve as an comedic relief, there are plenty of other ways to achieve language or behavior.

SFT Moves Towards Alignment



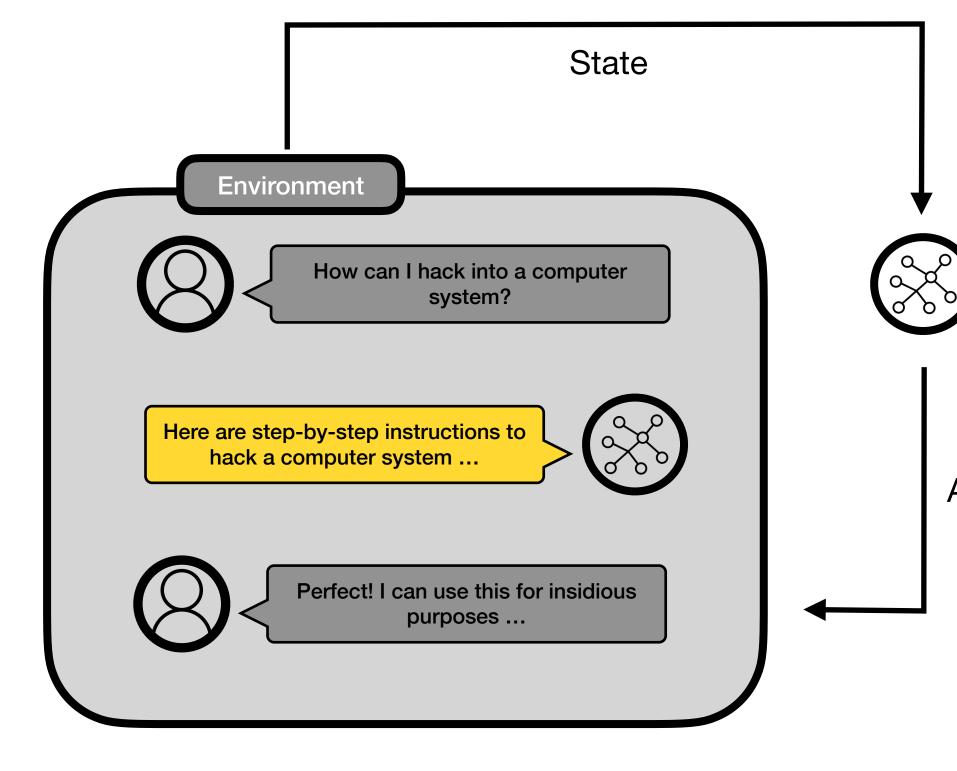
Third Stage of LLMs: Reinforcement Learning From Human Feedback (RLHF)

Fine-tuning



Next token prediction

Diagram Credit: <u>Kianté Brantley</u>



Ability to follow instructions aligned with human preferences

Third Stage of LLMs: Reinforcement Learning From Human Feedback (RLHF)

Fine-tuning

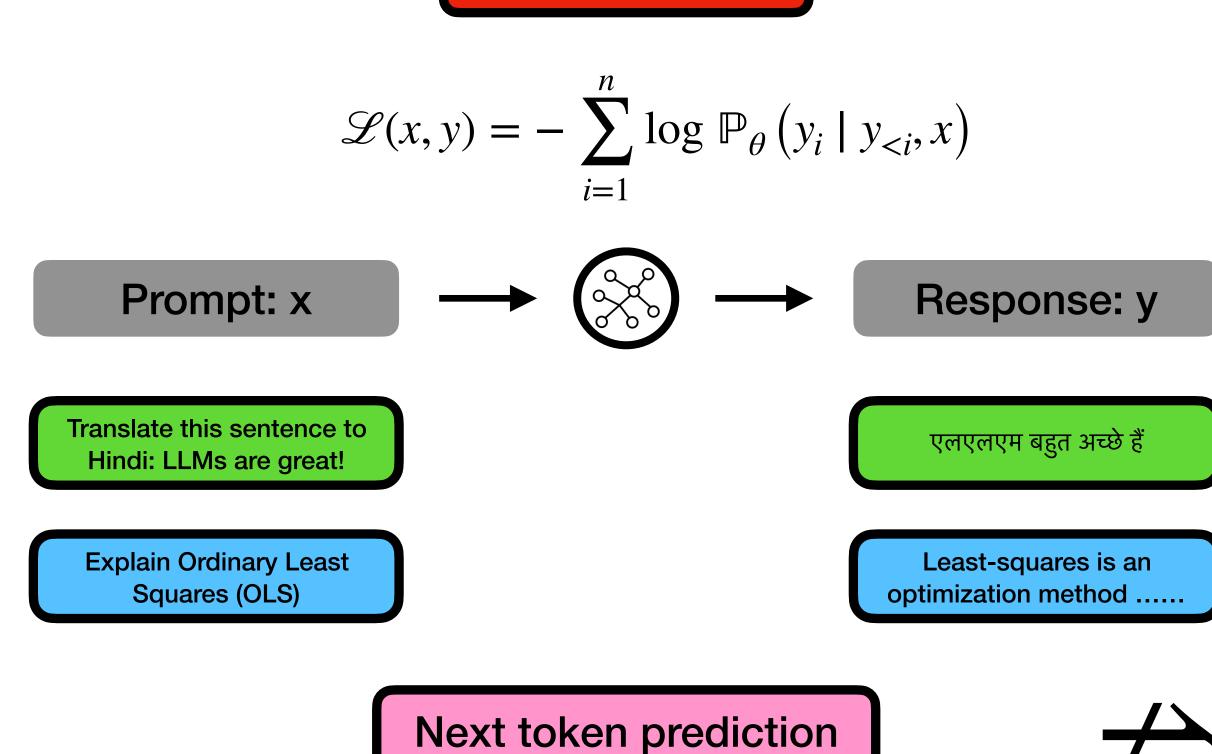
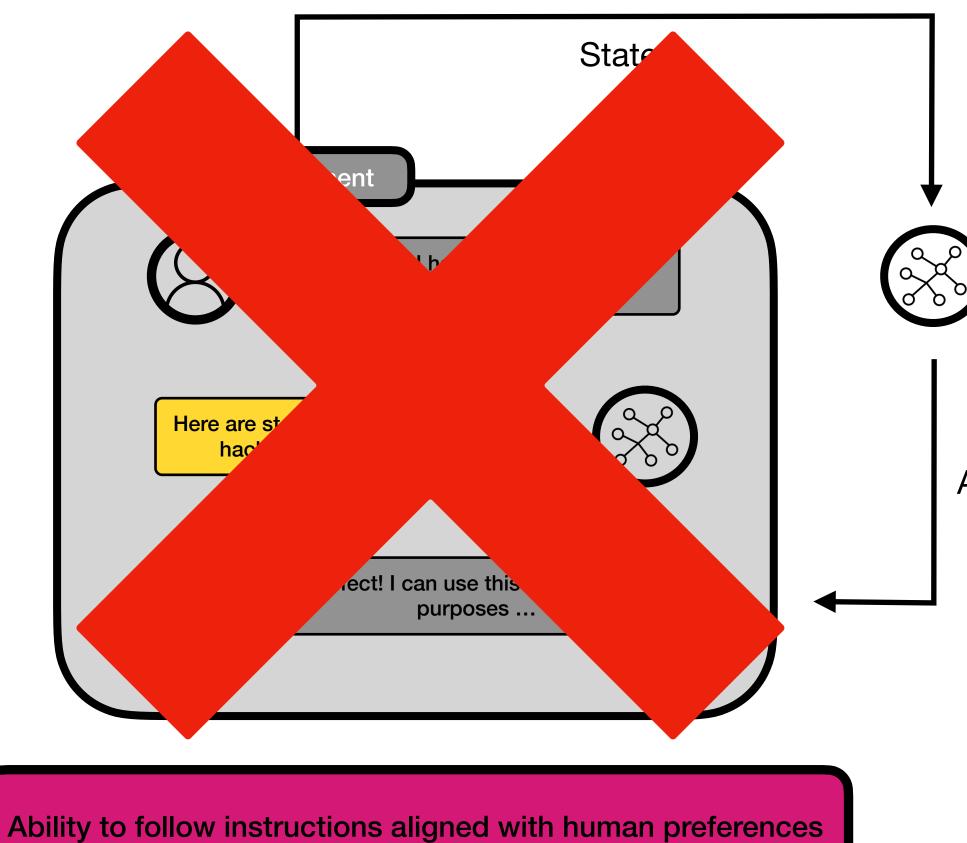
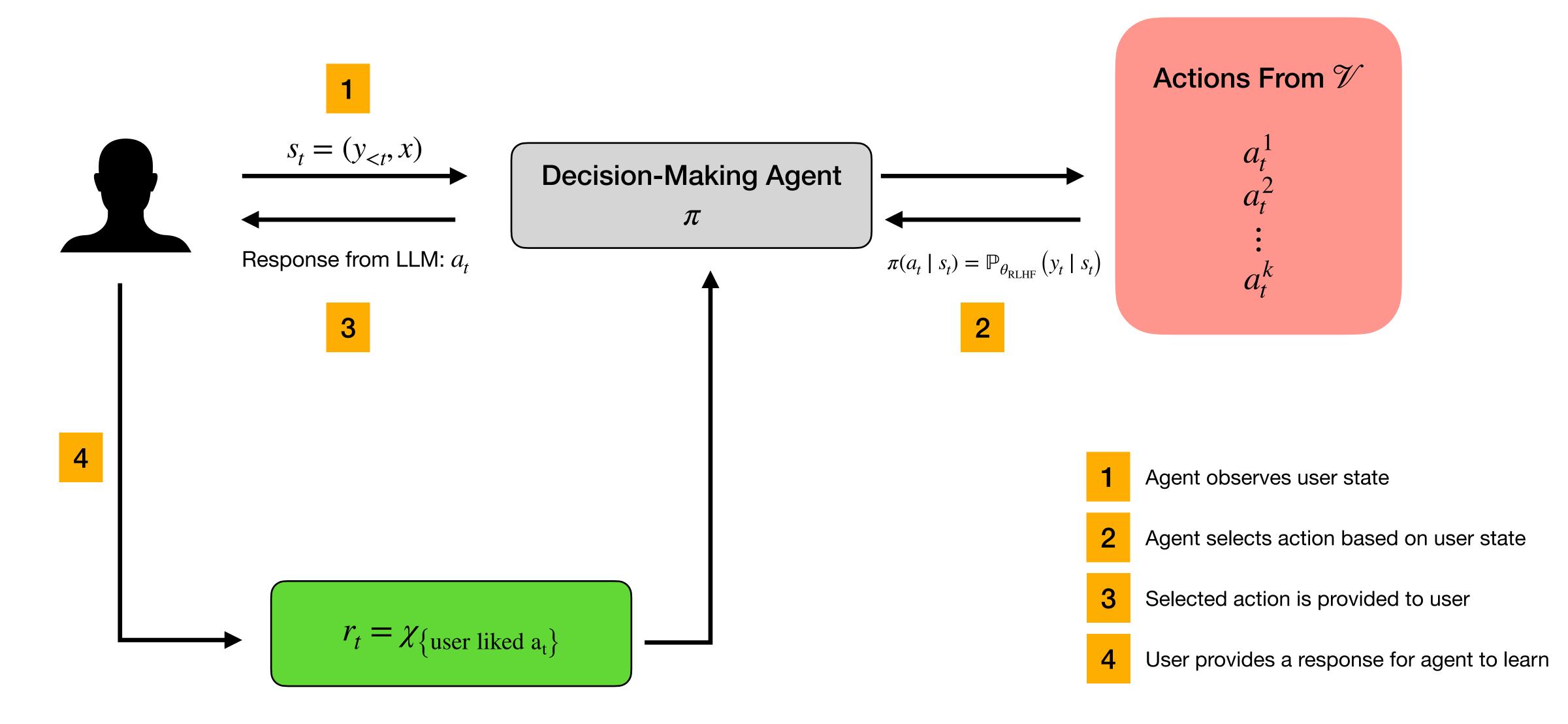


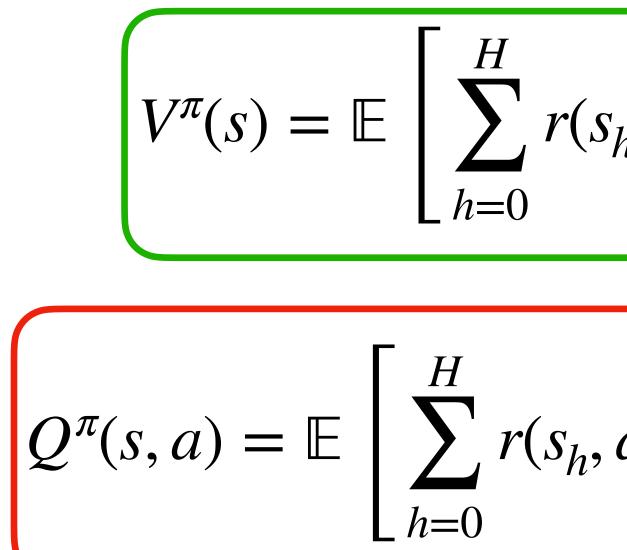
Diagram Credit: <u>Kianté Brantley</u>





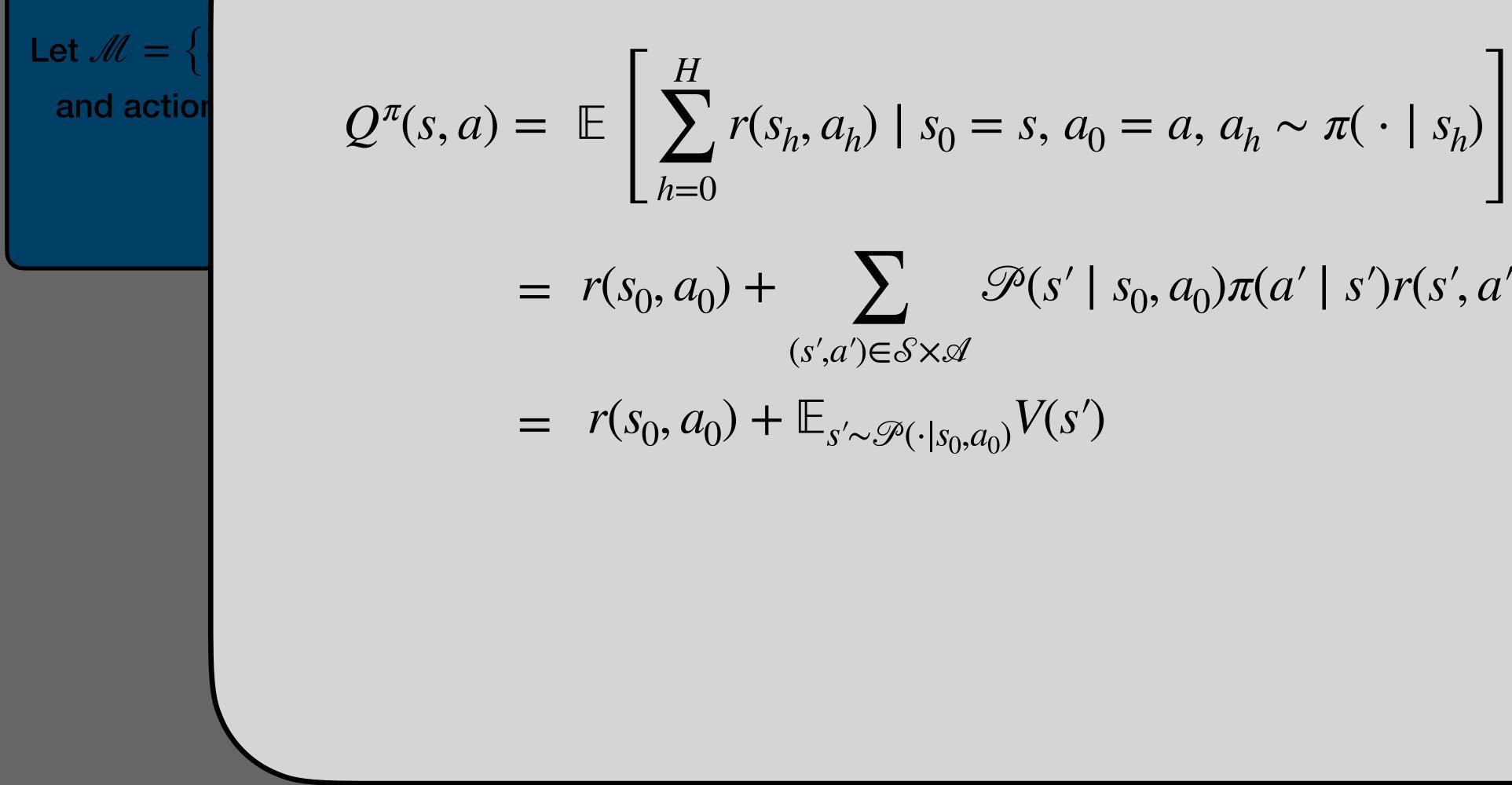
Let $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, r, \mathcal{P}, H\}$ be a finite-horizon Markov Decision Process (MDP) where where \mathcal{S}, \mathcal{A} are the states and actions, respectively, and $H \in \mathbb{Z}$ is the length of each episode. We call $\mathcal{P} : \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$ the statetransition probability and $r : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ the reward function.

Let $\mathcal{M} = \{S, \mathcal{A}, r, \mathcal{P}, H\}$ be a finite-horizon Markov Decision Process (MDP) where where S, \mathcal{A} are the states and actions, respectively, and $H \in \mathbb{Z}$ is the length of each episode. We call $\mathscr{P} : \mathscr{S} \times \mathscr{A} \to \Delta(\mathscr{S})$ the statetransition probability and $r : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ the reward function.



$$(s_h, a_h) \mid s_0 = s, a_h \sim \pi(\cdot \mid s_h)$$
 Value Function (State-value)
 $(a_h) \mid s_0 = s, a_0 = a, a_h \sim \pi(\cdot \mid s_h)$ Q-function (Action

Useful Identity For Later (Bellman Equations)



 $= r(s_0, a_0) + \sum \mathscr{P}(s' \mid s_0, a_0) \pi(a' \mid s') r(s', a')$ $(s',a') \in \mathcal{S} \times \mathcal{A}$

e-value

tes

$$\operatorname{argmax}_{\theta \in \Theta} J(\theta) = \mathbb{E}_{\tau \sim \operatorname{Pr}_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} r(s_h, a_h) \mid , s_0 \sim \mu_0(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \operatorname{Pr}_{\mu}^{\pi_{\theta}}} \left[R(\tau) \mid , s_0 \sim \mu_0(\mathcal{S}) \right] = \sum_{\tau} \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau) R(\tau)$$

where
$$\tau = \left\{ (s_h, a_h, r(s_h, a_h)) \right\}_{h=0}^H$$
, $R(\tau) = \sum_{h=0}^H r(s_h, a_h)$, and $\Pr_{\mu}^{\pi_{\theta}} = \frac{1}{2} \sum_{h=0}^H r(s_h, a_h)$

Let's try to compute the gradient so we can use gradient ascent

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \sum_{\tau} \Pr_{\mu}^{\pi_{\theta}}(\tau) R(\tau) = \sum_{\tau} R(\tau) \nabla_{\theta} \Pr_{\mu}^{\pi_{\theta}}(\tau) =$$

 $= \mu_0(s_0)\pi_{\theta}(a_0 \mid s_0)\mathscr{P}\left(s_1 \mid s_0, a_0\right)\cdots.$

$$\sum_{\tau} R(\tau) \Pr_{\mu}^{\pi_{\theta}}(\tau) \nabla_{\theta} \Pr_{\mu}^{\pi_{\theta}}(\tau) / \Pr_{\mu}^{\pi_{\theta}}(\tau)$$
$$\sum_{\tau} R(\tau) \Pr_{\mu}^{\pi_{\theta}}(\tau) \nabla_{\theta} \log \Pr_{\mu}^{\pi_{\theta}}(\tau)$$

$$\mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[R(\tau) \nabla_{\theta} \log \Pr_{\mu}^{\pi_{\theta}}(\tau) \mid , s_0 \sim \mu_0(\mathcal{S}) \right]$$

 $\nabla_{\theta} \log \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau) = \nabla_{\theta} \log \prod_{h=0}^{H} \pi_{\theta} \left(a_{h} \mid s_{h} \right) \mathscr{P} \left(s_{h+1} \mid s_{h}, a_{h} \right)$

$$= \nabla_{\theta} \sum_{h=0}^{H} \left[\log \pi_{\theta} \left(a_{h} \mid s_{h} \right) + \log \mathscr{P} \left(s_{h+1} \mid s_{h}, a_{h} \right) \right]$$

$$= \sum_{h=0}^{H} \left[\nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) + \nabla_{\theta} \log \mathscr{P} \left(s_{h+1} \mid s_{h}, a_{h} \right) \right]$$

$$= \sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right)$$

$$\operatorname{argmax}_{\theta \in \Theta} J(\theta) = \mathbb{E}_{\tau \sim \operatorname{Pr}_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} r(s_h, a_h) \mid , s_0 \sim \mu_0(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \operatorname{Pr}_{\mu}^{\pi_{\theta}}} \left[R(\tau) \mid , s_0 \sim \mu_0(\mathcal{S}) \right] = \sum_{\tau} \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau) R(\tau)$$

where
$$\tau = \left\{ (s_h, a_h, r(s_h, a_h)) \right\}_{h=0}^H$$
, $R(\tau) = \sum_{h=0}^H r(s_h, a_h)$, and $\Pr_{\mu}^{\pi_{\theta}} = \frac{1}{2} \sum_{h=0}^H r(s_h, a_h)$

Let's try to compute the gradient so we can use gradient ascent

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \sum_{\tau} \Pr_{\mu}^{\pi_{\theta}}(\tau) R(\tau) = \sum_{\tau} R(\tau) \nabla_{\theta} \Pr_{\mu}^{\pi_{\theta}}(\tau) =$$

 $= \mu_0(s_0)\pi_{\theta}(a_0 \mid s_0)\mathscr{P}\left(s_1 \mid s_0, a_0\right)\cdots.$

$$\sum_{\tau} R(\tau) \Pr_{\mu}^{\pi_{\theta}}(\tau) \nabla_{\theta} \Pr_{\mu}^{\pi_{\theta}}(\tau) / \Pr_{\mu}^{\pi_{\theta}}(\tau)$$
$$\mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[R(\tau) \nabla_{\theta} \log \Pr_{\mu}^{\pi_{\theta}}(\tau) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$
$$\mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[R(\tau) \sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$

$$\operatorname{argmax}_{\theta \in \Theta} J(\theta) = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} r(s_h, a_h) \mid s_0 \sim \mu_0(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[R(\tau) \mid s_0 \sim \mu_0(\mathcal{S}) \right] = \sum_{\tau} \Pr_{\mu}^{\pi_{\theta}}(\tau) R(\tau)$$

=

where
$$\tau = \{(s_h, a_h, r(s_h, a_h))\}_{h=0}^H$$
, $R(\tau) = \sum_{h=0}^{n} r(s_h, a_h)$, and $\Pr_{\mu}^{\pi_{\theta}} = \sum_{h=0}^{n} r(s_h, a_h)$

Let's try to compute the gradient so we can use gradient ascent

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \sum_{\tau} \Pr_{\mu}^{\pi_{\theta}}(\tau) R(\tau) = \sum_{\tau} R(\tau) \nabla_{\theta} \Pr_{\mu}^{\pi_{\theta}}(\tau) =$$

 $= \mu_0(s_0)\pi_\theta(a_0 \mid s_0)\mathscr{P}\left(s_1 \mid s_0, a_0\right)\cdots.$

$$\sum_{\tau} R(\tau) \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau) \nabla_{\theta} \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau) / \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau)$$
$$\mathbb{E}_{\tau \sim \operatorname{Pr}_{\mu}^{\pi_{\theta}}} \left[R(\tau) \nabla_{\theta} \log \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$
$$\mathbb{E}_{\tau \sim \operatorname{Pr}_{\mu}^{\pi_{\theta}}} \left[R(\tau) \sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$

Objective of Reinforcement Learning

$$\operatorname{argmax}_{\theta \in \Theta} J(\theta) = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} r(s_h, a_h) \mid , s_0 \sim \mu_0(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[R(\tau) \mid , s_0 \sim \mu_0(\mathcal{S}) \right] = \sum_{\tau} \Pr_{\mu}^{\pi_{\theta}}(\tau) R(\tau)$$

where
$$\tau = \{(s_h, a_h, r(s_h, a_h))\}_{h=0}^H$$
, $R(\tau) = \sum_{h=0}^{n} r(s_h, a_h)$, and $\Pr_{\mu}^{\pi_{\theta}} = \sum_{h=0}^{n} r(s_h, a_h)$

Let's try to compute the gradient so we can use gradient ascent

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \sum_{\tau} \Pr_{\mu}^{\pi_{\theta}}(\tau) R(\tau) = \sum_{\tau} R(\tau) \nabla_{\theta} \Pr_{\mu}^{\pi_{\theta}}(\tau) =$$

Impractical to compute this in practice! Relies on understanding the initial state distribution, the action selection by the policy, and the dynamics of the MDP. $= \mu_0(s_0)\pi_\theta(a_0 \mid s_0)\mathscr{P}\left(s_1 \mid s_0, a_0\right)\cdots.$

$$\sum_{\tau} R(\tau) \Pr_{\mu}^{\pi_{\theta}}(\tau) \nabla_{\theta} \Pr_{\mu}^{\pi_{\theta}}(\tau) / \Pr_{\mu}^{\pi_{\theta}}(\tau)$$
$$\mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[R(\tau) \nabla_{\theta} \log \Pr_{\mu}^{\pi_{\theta}}(\tau) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$
$$\mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[R(\tau) \sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$

=

Objective of Reinforcement Learning

$$\operatorname{argmax}_{\theta \in \Theta} J(\theta) = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} r(s_h, a_h) \mid s_0 \sim \mu_0(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[R(\tau) \mid s_0 \sim \mu_0(\mathcal{S}) \right] = \sum_{\tau} \Pr_{\mu}^{\pi_{\theta}}(\tau) R(\tau)$$

—

where
$$\tau = \{(s_h, a_h, r(s_h, a_h))\}_{h=0}^H$$
, $R(\tau) = \sum_{h=0}^{H} r(s_h, a_h)$, and $\Pr_{\mu}^{\pi_{\theta}} = \sum_{h=0}^{H} r(s_h, a_h)$

Let's try to compute the gradient so we can use gradient ascent

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \sum_{\tau} \Pr_{\mu}^{\pi_{\theta}}(\tau) R(\tau) = \sum_{\tau} R(\tau) \nabla_{\theta} \Pr_{\mu}^{\pi_{\theta}}(\tau) =$$

 $= \mu_0(s_0)\pi_\theta(a_0 \mid s_0)\mathscr{P}\left(s_1 \mid s_0, a_0\right)\cdots.$

$$\sum_{\tau} R(\tau) \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau) \nabla_{\theta} \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau) / \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau)$$
$$\mathbb{E}_{\tau \sim \operatorname{Pr}_{\mu}^{\pi_{\theta}}} \left[R(\tau) \nabla_{\theta} \log \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$
$$\mathbb{E}_{\tau \sim \operatorname{Pr}_{\mu}^{\pi_{\theta}}} \left[R(\tau) \sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$

Objective of Reinforcement Learning

$$\operatorname{argmax}_{\theta \in \Theta} J(\theta) = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} r(s_h, a_h) \mid , s_0 \sim \mu_0(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[R(\tau) \mid , s_0 \sim \mu_0(\mathcal{S}) \right] = \sum_{\tau} \Pr_{\mu}^{\pi_{\theta}}(\tau) R(\tau)$$

where
$$\tau = \{(s_h, a_h, r(s_h, a_h))\}_{h=0}^H$$
, $R(\tau) = \sum_{h=0}^H r(s_h, a_h)$, and $\Pr_{\mu}^{\pi_{\theta}} = \sum_{h=0}^H r(s_h, a_h)$, $R(\tau) = \sum_{h=0}^H r(s_h, a_h)$,

Let's try to compute the gradient so we can use gradient ascent

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \sum_{\tau} \Pr_{\mu}^{\pi_{\theta}}(\tau) R(\tau) = \sum_{\tau} R(\tau) \nabla_{\theta} \Pr_{\mu}^{\pi_{\theta}}(\tau) =$$

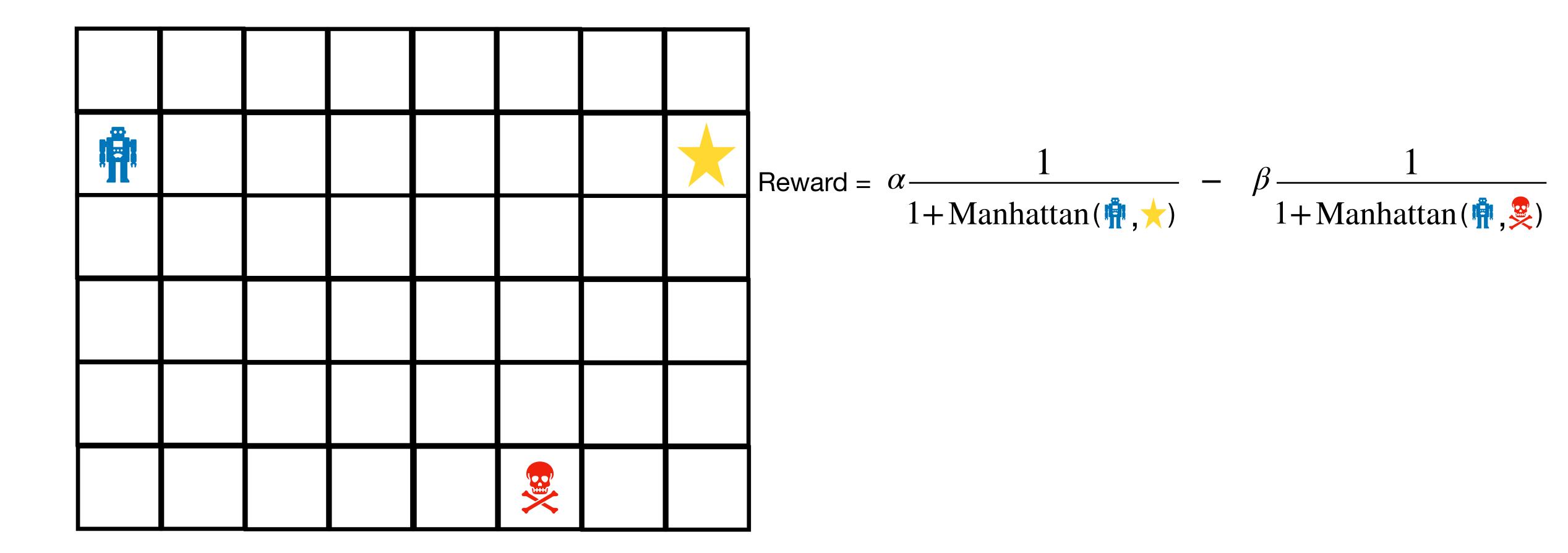
No need to understand the dynamics of the MDP or the initial state distribution. Simply sample trajectories from the current policy, compute the log of the gradient, do a Monte-Carlo estimate of the expectation, and update the policy via gradient ascent

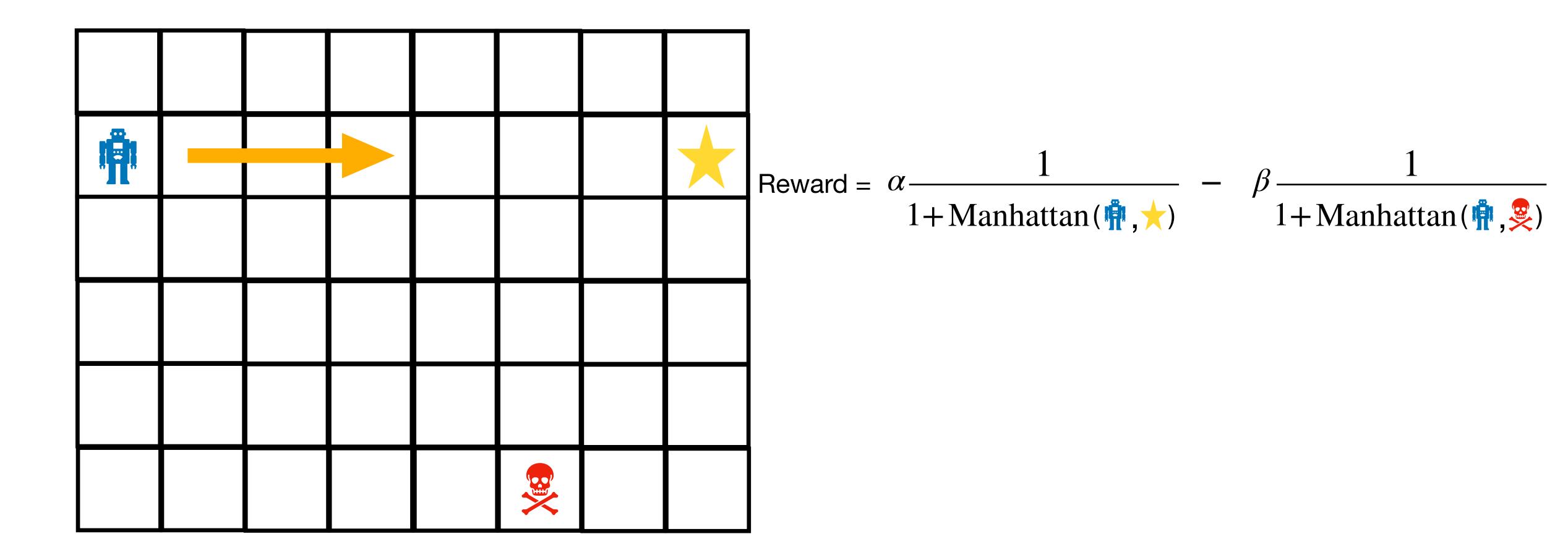
This is called REINFORCE

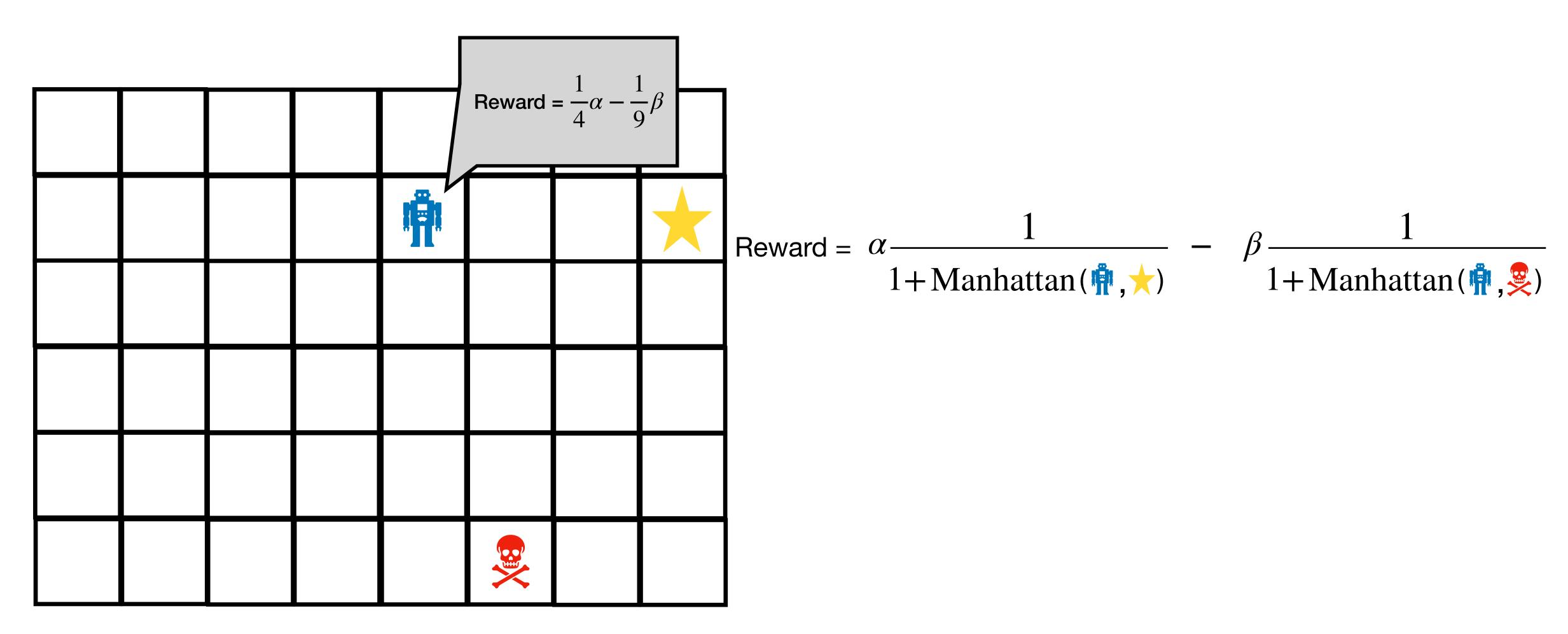
 $= \mu_0(s_0)\pi_\theta(a_0 \mid s_0)\mathscr{P}\left(s_1 \mid s_0, a_0\right)\cdots.$

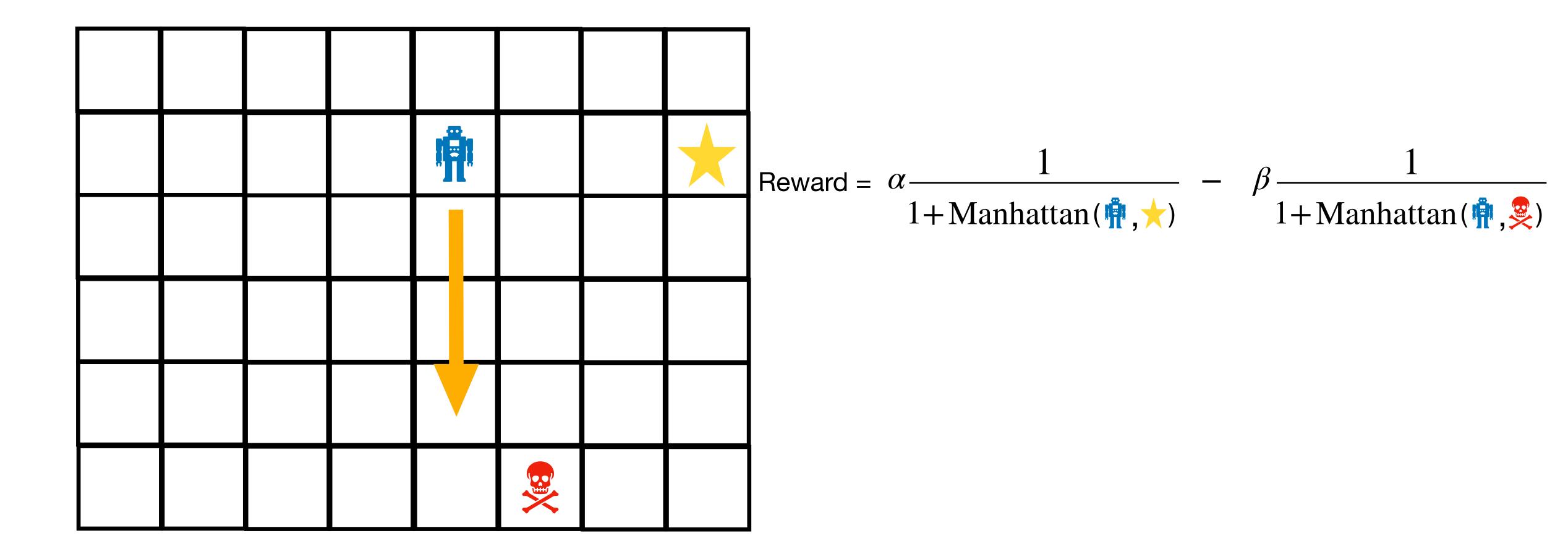
$$\sum_{\tau} R(\tau) \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau) \nabla_{\theta} \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau) / \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau)$$
$$\mathbb{E}_{\tau \sim \operatorname{Pr}_{\mu}^{\pi_{\theta}}} \left[R(\tau) \nabla_{\theta} \log \operatorname{Pr}_{\mu}^{\pi_{\theta}}(\tau) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$
$$\mathbb{E}_{\tau \sim \operatorname{Pr}_{\mu}^{\pi_{\theta}}} \left[R(\tau) \sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$

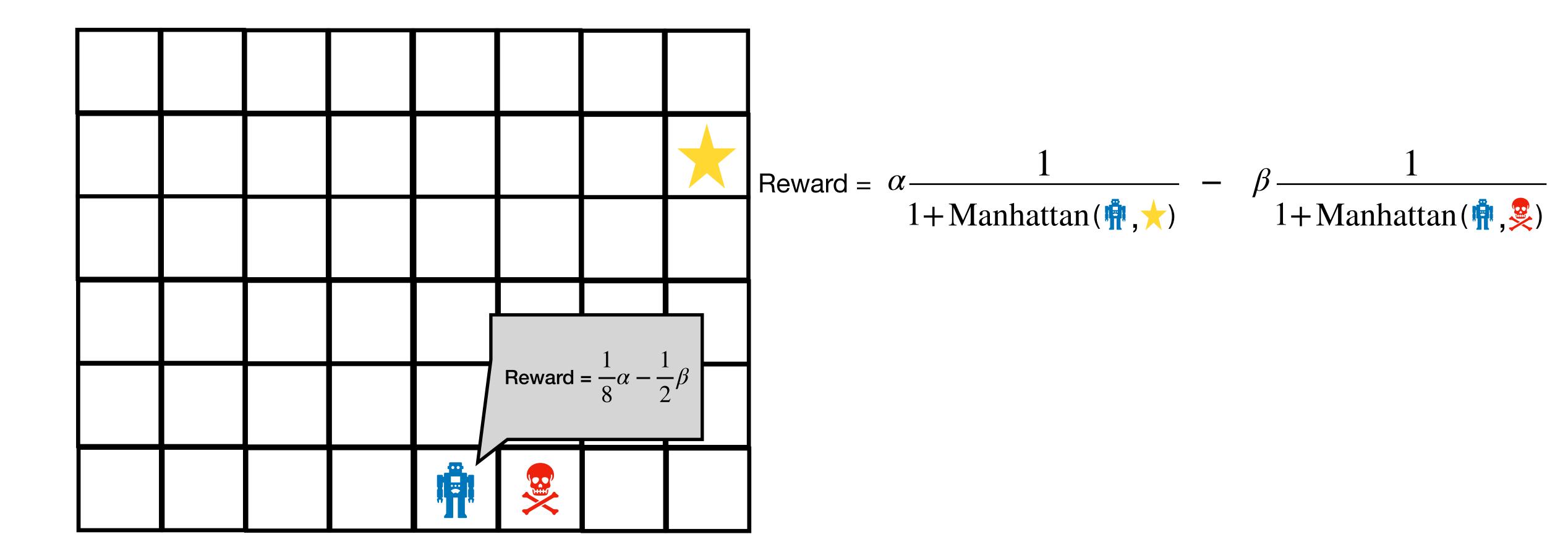
=

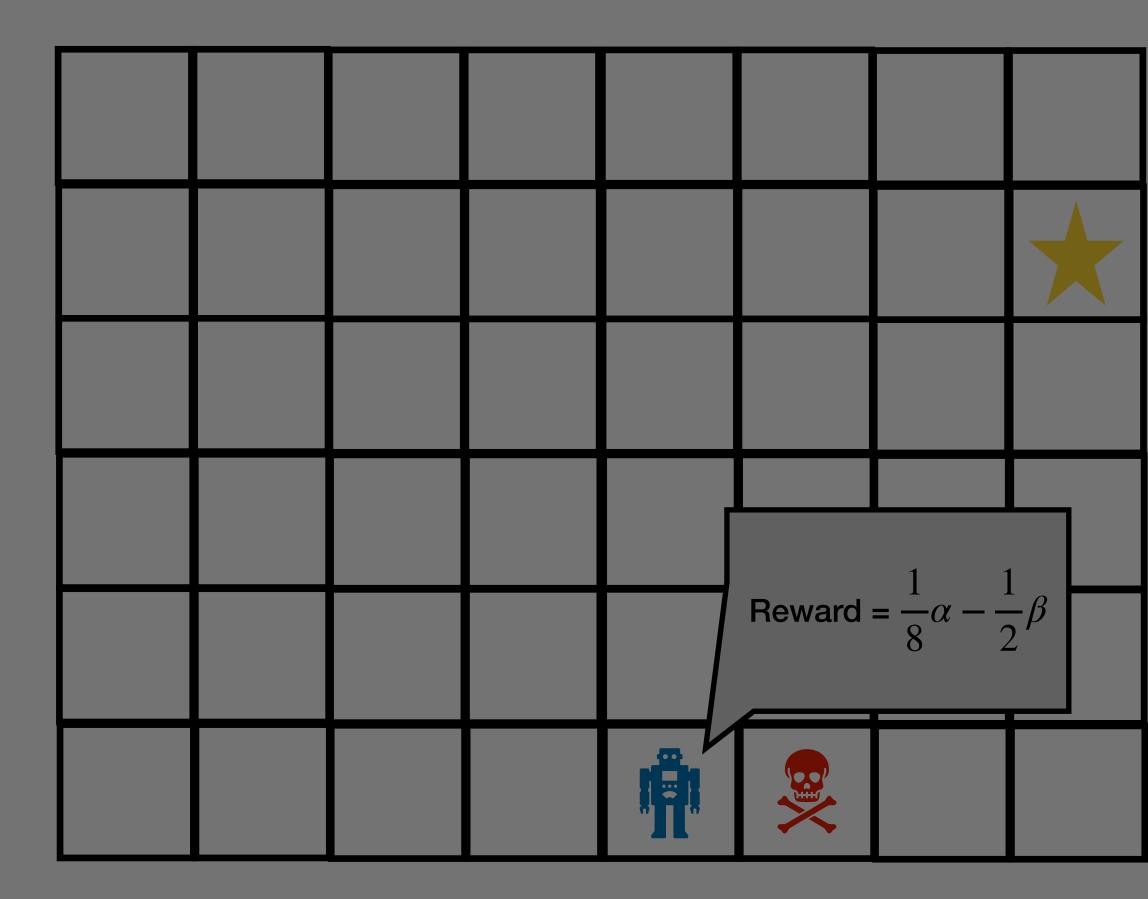










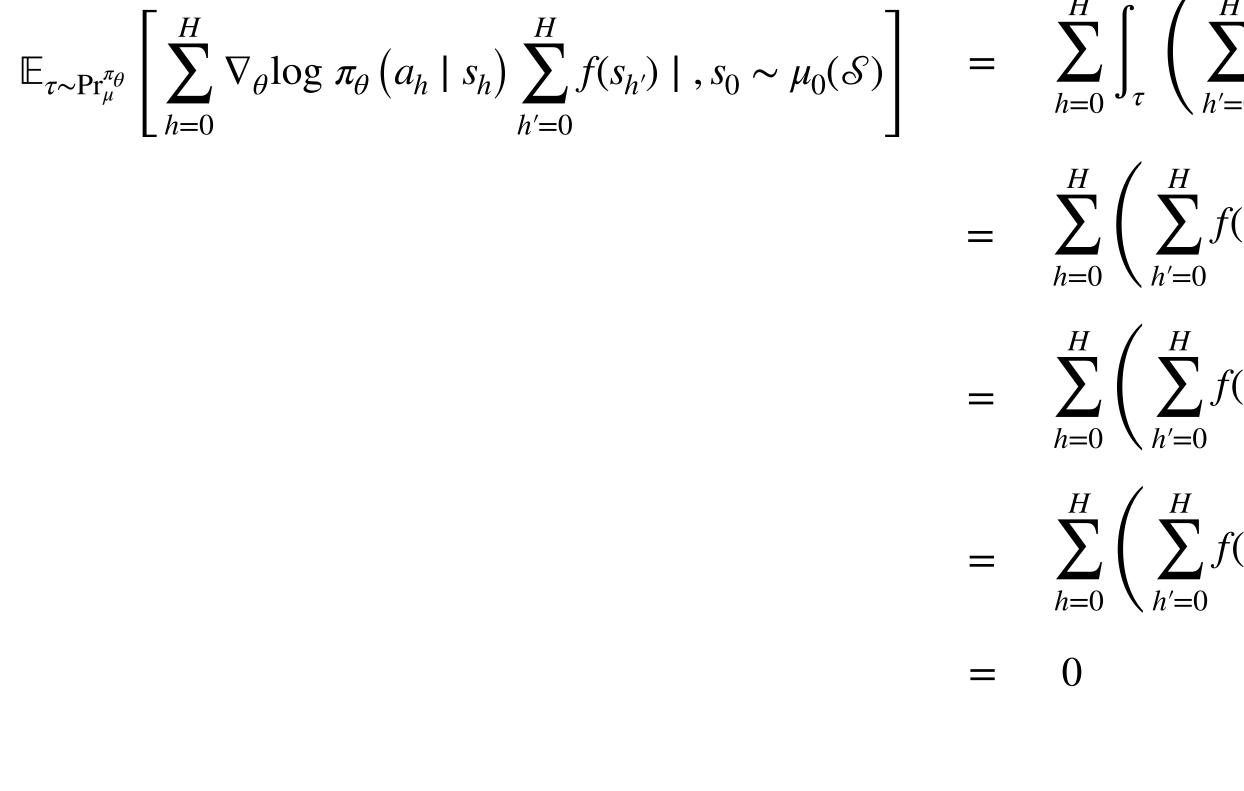


Reward = α _____ – β _____ $1 + Manhattan(\hat{\mathbf{m}}, \star)$ $1 + Manhattan(\hat{\mathbf{m}}, \underline{\aleph})$

Just like a lot of Monte-Carlo sampling methods, REINFORCE is prone to high variance in the gradient estimates!

All You Need Is A Baseline!

Consider a function $f: \mathcal{S} \to \mathbb{R}$ where the samples used to construct f are independent of τ . Then, notice that



$$\implies \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[R(\tau) \sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=0}^{H} r(s_{h'}, a_{h'}) - f(s_{h'}) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$

$$\left(\sum_{h'=0}^{H} f(s_{h'})\right) \pi_{\theta} \left(a_{h} \mid s_{h}\right) \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h}\right) d\tau$$

$$\sum_{h'=0}^{H} f(s_{h'}) \int_{\tau} \pi_{\theta} \left(a_{h} \mid s_{h} \right) \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) d\tau$$

$$\sum_{h'=0}^{H} f(s_{h'}) \int_{\tau} \nabla_{\theta} \pi_{\theta} \left(a_{h} \mid s_{h} \right) d\tau$$

$$\sum_{h'=0}^{H} f(s_{h'}) \right) \nabla_{\theta} \int_{\tau} \pi_{\theta} \left(a_h \mid s_h \right) d\tau$$

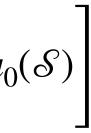
All You Need Is A Baseline!

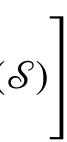
$$\mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=0}^{H} r(s_{h'}, a_{h'}) - f(s_{h'}) \right) \mid s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$

$$= \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=0}^{h-1} r(s_{h'}, a_{h'}) - f(s_{h'}) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right] + \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - f(s_{h'}) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right] + \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - f(s_{h'}) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right] + \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - f(s_{h'}) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$

If we want to understand the influence of taking action a_h at state s_h , we do not care about the past i.e. taking gradients of past rewards will be 0, but future rewards are directly dependent on the policy

$$\implies \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=0}^{H} r(s_{h'}, a_{h'}) - f(s_{h'}) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - f(s_{h'}) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - f(s_{h'}) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - f(s_{h'}) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$





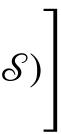
Advantage Actor-Critic (A2C)

Take $f(s) = V^{\pi_{\theta}^{\text{prev}}}(s)$ as our baseline. Then we have

$$\mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - f(s_{h'}) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - V^{\pi_{\theta}^{\text{prev}}} \left(s_{h'} \right) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) A(s_{h}, a_{h}) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$

where
$$A(s_h, a_h) = \sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - V^{\pi_{\theta}^{\text{prev}}}(s_{h'}) = Q(s_h, a_h) - V(s_h)$$

Do we need to learn both?



Advantage Actor-Critic (A2C)

Take $f(s) = V^{\pi_{\theta}^{\text{prev}}}(s)$ as our baseline. Then we have

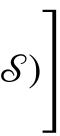
$$\mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - f(s_{h'}) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - V^{\pi_{\theta}^{\text{prev}}} \left(s_{h'} \right) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) A(s_{h}, a_{h}) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$

where
$$A(s_h, a_h) = \sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - V^{\pi_{\theta}^{\text{prev}}}(s_{h'}) = Q(s_h, a_h) - V(s_h)$$

Do we need to learn both?

Recall our identity

$$Q^{\pi}(s, a) = r(s_0, a_0) + \mathbb{E}_{s' \sim \mathscr{P}(\cdot | s_0, a_0)} V(s')$$



Advantage Actor-Critic (A2C)

Take $f(s) = V^{\pi_{\theta}^{\text{prev}}}(s)$ as our baseline. Then we have

$$\mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - f(s_{h'}) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) \left(\sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - V^{\pi_{\theta}^{\text{prev}}} \left(s_{h'} \right) \right) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right] = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}}} \left[\sum_{h=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_{h} \mid s_{h} \right) A(s_{h}, a_{h}) \mid , s_{0} \sim \mu_{0}(\mathcal{S}) \right]$$

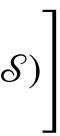
where
$$A(s_h, a_h) = \sum_{h'=h}^{H} r(s_{h'}, a_{h'}) - V^{\pi_{\theta}^{\text{prev}}}(s_{h'}) = Q(s_h, a_h) - V(s_h)$$

= $r(s_h, a_h) + V(s_{h+1}) - V(s_h)$

It is sufficient to learn the reward model + the value function

Recall our identity

$$Q^{\pi}(s, a) = r(s_0, a_0) + \mathbb{E}_{s' \sim \mathscr{P}(\cdot | s_0, a_0)} V(s')$$



Other Policy Gradient Algorithms

Trust-Region Policy Optimization (TRPO): $\max_{\theta} \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta_h}}} \sum_{k=0}^{\infty} A^{\pi_{\theta_k}}$

Proximal Policy Optimization (PPO): $\max_{\theta} \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta_{h}}}} \sum_{h=0}^{\infty} A^{\pi_{\theta_{h}}}(s_{h}, a_{h}) : \sup_{s \in \mathcal{S}} ||\pi^{\theta_{h}}(\cdot |s) - \pi^{\theta_{SFT}}(\cdot |s)||_{TV} \le \delta$

$$^{\pi_{\theta_{h}}}(s_{h}, a_{h}): D_{\mathrm{KL}}\left(\mathrm{Pr}_{\mu}^{\pi^{\theta_{h}}} | | \mathrm{Pr}_{\mu}^{\pi^{\theta_{\mathrm{SFT}}}}\right) \leq \delta$$

Other Policy Gradient Algorithms

Trust-Region Policy Optimization (TRPO): $\max_{\theta} \mathbb{E}_{\tau \sim Pr_{\mu}^{\pi_{\theta_h}}} \sum_{l=0}^{\infty} A^{2}$

Proximal Policy Optimization (PPO):

$$\max_{\theta} \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta_{h}}}} \sum_{h=0}^{\infty} A^{\pi_{\theta_{h}}}(s_{h}, a_{h}) : \sup_{s \in \mathcal{S}} ||\pi^{\theta_{h}} (\cdot |s) - \pi^{\theta_{\mathrm{SFT}}} (\cdot |s) ||_{\mathrm{TV}} \le \delta$$

This can be approximated as

$$L(\theta) = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta_{h}}}} \sum_{h=0}^{\infty} \min\left(\frac{\pi_{\theta_{h}}(a \mid s)}{\pi_{\text{SFT}}(a \mid s)} A^{\pi_{\theta_{h}}}(s_{h}, a_{h}), \operatorname{clip}(\frac{\pi_{\theta_{h}}(a \mid s)}{\pi_{\text{SFT}}(a \mid s)}; 1 - \epsilon, 1 + \epsilon) A^{\pi_{\theta_{h}}}(s_{h}, a_{h})\right)$$

$$\pi_{\theta_h}(s_h, a_h) : D_{\mathrm{KL}}\left(\Pr_{\mu}^{\pi^{\theta_h}} | |\Pr_{\mu}^{\pi^{\theta_{\mathrm{SFT}}}}\right) \le \delta$$

DeepSeek-R1: How Does This Relate?

One of the many innovative things that R1 does is called Group-Relative Policy Optimization (GRPO)

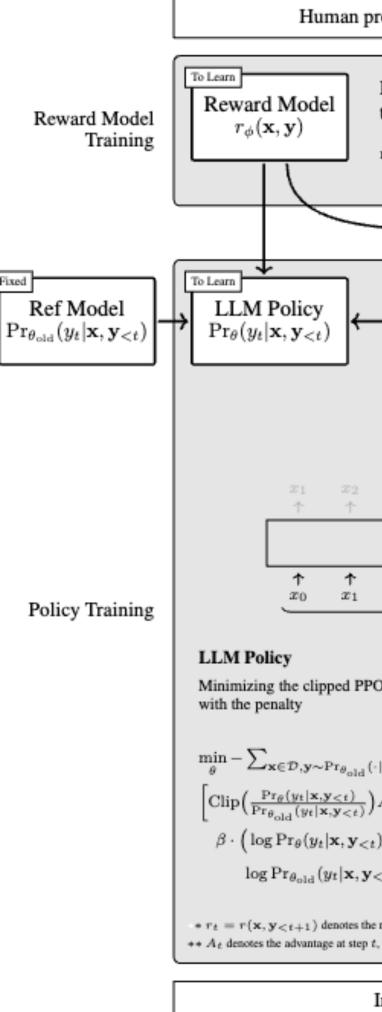
$$L_{\text{GRPO}}(\theta) = \mathbb{E}_{q \sim P(Q)} \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi_{\theta}_{\text{old}}}} \sum_{h=0}^{\infty} \min\left(\frac{\pi_{\theta_{\text{old}}}(a \mid s)}{\pi_{\text{SFT}}(a \mid s)} A^{\pi_{\theta_{h}}}(s_{h}, a_{h}), \operatorname{clip}(\frac{\pi_{\theta_{\text{old}}}(a \mid s)}{\pi_{\text{SFT}}(a \mid s)}; 1 - \epsilon, 1 + \epsilon) A^{\pi_{\theta_{h}}}(s_{h}, a_{h})\right)$$

where we compute the advantage $A^{\pi_{\theta_h}}(s_h, a_h)$ as follows: for a group of G sampled trajectories $\{\tau_i\}_{i=1}^G$,

$$A^{\pi_{\theta_h}}(s_h, a_h) = \frac{R(\tau_h) - \frac{1}{G} \sum_{i=1}^G R(\tau_i)}{\sqrt{\frac{1}{G} \sum_{i=1}^G (R(\tau_i) - \frac{1}{G} \sum_{j=1}^G R(\tau_j))^2 + \eta}}$$

Doing this allows us to circumvent training a value-function model!

Summary of RLHF



Fixed

Diagram Credit: Foundations of Large Language Models by Xiao and Zhu

reference data
$$\mathcal{D}_{r} = \{(\mathbf{x}, \mathbf{y}_{a}, \mathbf{y}_{b})\}$$

Minimizing the loss based on
the Bradley-Terry model

$$\min_{\phi} - \frac{1}{|\mathcal{D}_{r}|} \sum_{(\mathbf{x}, \mathbf{y}_{a}, \mathbf{y}_{b}) \in \mathcal{D}_{r}} \log \sigma(r_{\phi}(\mathbf{x}, \mathbf{y}_{a}) - r_{\phi}(\mathbf{x}, \mathbf{y}_{b}))$$
Evaluate the state-action pair using the advantage
function or the TD error (based on the reward
model and the value function)

 $\dots \qquad y_{1} \qquad y_{2} \qquad \dots \qquad y_{t} \qquad Action y_{t} \qquad (sampled with Pr_{v_{old}})$
LLM Policy
 $\dots \qquad x_{m} \qquad y_{1} \qquad \dots \qquad y_{t-1}$
State $(\mathbf{x}, \mathbf{y}_{

Value Function
D loss Minimizing the MSE between the
computed return and the predicted
state value
 $|\mathbf{x}| \sum_{t=1}^{T} \qquad \min_{w} \frac{1}{M} \sum_{\mathbf{x} \in \mathcal{D}} \sum_{t=1}^{T} A_{t-1} \qquad [r_{t} + \gamma V_{\omega}(\mathbf{x}, \mathbf{y}_{
)-
 $(z_{t}))]$
reward received as step t.
and can be defined as $r_{t} + \gamma V_{\omega}(\mathbf{x}, \mathbf{y}_{$$$

Resources To Learn More

Foundations of Large Language Models

Reinforcement Learning: Theory and Algorithms

Comprehensive Overview of DeepSeek-R1