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Foundational Models
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“A foundation model is a large-scale machine learning model trained 
on a broad data set that can be adapted and fine-tuned for a wide variety 
of applications”1

[1] On the Opportunities and Risks of Foundation Models by Bommasani et al. 2022
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Diagram Credit: Kianté Brantley

https://xkianteb.github.io/
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Stages of LLM Training

Diagram Credit: Training language models to follow instructions with 
human feedback by Ouyang, Long, et al.
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Encoder

Decoder

Transformer Architecture

Diagram Credit: Attention Is All You Need by Vaswani et al.
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First Stage of LLMs: Pre-Training (SSL)
Language Models 

p(y1, …, yn) = p(y1)p(y2 ∣ y1)⋯p(yn ∣ y1, …, yn−1) =
n

∏
k=1

p(yk |y1, …, yk−1)

Pre-Train (SSL) 

Large Unlabeled Text Data

Diagram Credit: Kianté Brantley

https://xkianteb.github.io/
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Pre-Training in Encoder Models
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Transformer Encoder

workLLMsI use[CLS] forInput

Masked Language Modeling (MLM)
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Transformer Encoder

work[MASK]I use[CLS] forInput

Masked Language Modeling (MLM)
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Transformer Encoder

work[MASK]I use[CLS] for

workI use[CLS] for

Input

Output

yi,mask−pred = argmaxν∈𝒱p(ν ∣ x−i, y−i)

LLMs
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Transformer Encoder

work[MASK]I use[CLS] for

workI use[CLS] for

Input

Output

LLMs

yi,mask−pred = argmaxν∈𝒱p(ν ∣ x−i, y−i)

Let  for  be the 
randomly chosen tokens to mask, , and 







mi ∼i.i.d Unif (1,n) i = 1,…, k
M = {mi}k

i=1
xmasked = REPLACE (x, m, [MASK])

min
θ∈Θ

ℒMLM (x, θ) = 𝔼 [−∑
i∈M

log ℙθ (xi ∣ xmasked)]
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workLLMsI use[CLS] for

Next Sentence Prediction

[SEP] usefulThey are

Transformer Encoder

Sentence 1 Sentence 2



16

workLLMsI use[CLS] for [SEP] usefulThey are

Transformer Encoder

FCN + Softmax

isNext
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Pre-Training in Encoder-Decoder Models
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Consecutive Span Prediction

I use LLMs for work! They are useful!
Original Text

I use <X> work! They are <Y>!
Input Text

<X> LLMs for <Y> useful <Z>
Target Text
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Transformer Encoder

work<X>I use[CLS] [SEP] <Y>They are

LLMs for<X> <Y> useful <Z>

Transformer Decoder

Consecutive Span Prediction
LLMs for useful
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Pre-Training in Decoder Models
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Transformer Decoder

workLLMsI use[BOS] forInput

Casual Language Modeling 

I use LLMs for work [EOS]
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Transformer Decoder

workLLMsI use[BOS] forInput

Casual Language Modeling 

I use LLMs for work [EOS]


min
θ∈Θ

ℒCLM (x, θ) = −
n

∑
i=1

log ℙθ (yi ∣ y<i)

Next Word Prediction

Casual Language Modeling Objective 
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Generative Pre-Training

Diagram Credit: Improving Language Understanding by Generative 
Pre-Training by Radford et al.



24

Second Stage of LLMs: Supervised Fine Tuning (SFT)
Language Models 

ℒ(x, y) = −
n

∑
i=1

log ℙθ (yi ∣ y<i, x)

Fine-Tuning

Input (Prompt): x

Translate this sentence to Hindi: LLMs are 
great!

Explain Ordinary Least Squares (OLS)

एलएलएम बहुत अच्छे हैं


Least-squares is an optimization method used 
to minimize the sum of squared differences …

Output: y

Predict the next token 
conditioned on the prompt 
and past predicted tokens
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Supervised Fine Tuning (SFT)
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SFT Moves Towards Alignment
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Third Stage of LLMs: Reinforcement Learning From Human Feedback (RLHF)

ℒ(x, y) = −
n

∑
i=1

log ℙθ (yi ∣ y<i, x)

Fine-tuning

Prompt: x

Translate this sentence to 
Hindi: LLMs are great!

Explain Ordinary Least 
Squares (OLS)

Response: y

एलएलएम बहुत अच्छे हैं


Least-squares is an 
optimization method …… 

Next token prediction

How can I hack into a computer 
system?

Here are step-by-step instructions to  
hack a computer system …

Perfect! I can use this for insidious 
purposes … 

Environment

State

Action

Ability to follow instructions aligned with human preferences

Diagram Credit: Kianté Brantley

https://xkianteb.github.io/
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Third Stage of LLMs: Reinforcement Learning From Human Feedback (RLHF)

ℒ(x, y) = −
n

∑
i=1

log ℙθ (yi ∣ y<i, x)

Prompt: x

Translate this sentence to 
Hindi: LLMs are great!

Explain Ordinary Least 
Squares (OLS)

Response: y

एलएलएम बहुत अच्छे हैं


Least-squares is an 
optimization method …… 

Fine-tuning

How can I hack into a computer 
system?

Here are step-by-step instructions to  
hack a computer system …

Perfect! I can use this for insidious 
purposes … 

Environment

State

Action

Next token prediction Ability to follow instructions aligned with human preferences⇏

Diagram Credit: Kianté Brantley

https://xkianteb.github.io/
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Introduction To Reinforcement Learning

Decision-Making Agent 
π

st = (y<t, x)

1

1 Agent observes user state

Actions From  

 
 
 
 

𝒱

a1
t

a2
t

⋮
ak

t
π(at ∣ st) = ℙθRLHF (yt ∣ st)

2

2 Agent selects action based on user state

Response from LLM: at

3

3 Selected action is provided to user
rt = χ{user liked at}

4

4 User provides a response for agent to learn
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Introduction To Reinforcement Learning

Let  be a finite-horizon Markov Decision Process (MDP) where where  are the states 
and actions, respectively, and  is the length of each episode. We call  the state-

transition probability and  the reward function.

ℳ = {𝒮, 𝒜, r, 𝒫, H} 𝒮, 𝒜
H ∈ ℤ 𝒫 : 𝒮 × 𝒜 → Δ (𝒮)

r : 𝒮 × 𝒜 → ℝ



31

Introduction To Reinforcement Learning

Let  be a finite-horizon Markov Decision Process (MDP) where where  are the states 
and actions, respectively, and  is the length of each episode. We call  the state-

transition probability and  the reward function.

ℳ = {𝒮, 𝒜, r, 𝒫, H} 𝒮, 𝒜
H ∈ ℤ 𝒫 : 𝒮 × 𝒜 → Δ (𝒮)

r : 𝒮 × 𝒜 → ℝ

Vπ(s) = 𝔼 [
H

∑
h=0

r(sh, ah) ∣ s0 = s, ah ∼ π( ⋅ ∣ sh)]

Qπ(s, a) = 𝔼 [
H

∑
h=0

r(sh, ah) ∣ s0 = s, a0 = a, ah ∼ π( ⋅ ∣ sh)]

Value Function (State-value)

Q-function (Action-value)
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Introduction To Reinforcement Learning

Let  be a finite-horizon Markov Decision Process (MDP) where where  are the states 
and actions, respectively, and  is the length of each episode. We call  the state-

transition probability and  the reward function.

ℳ = {𝒮, 𝒜, r, 𝒫, H} 𝒮, 𝒜
H ∈ ℤ 𝒫 : 𝒮 × 𝒜 → Δ (𝒮)

r : 𝒮 × 𝒜 → ℝ

Vπ
h (s) = 𝔼 [

H

∑
t=h

rt(st, at) ∣ sh = s, at ∼ πt(st)]

Qπ
h (s, a) = 𝔼 [

H

∑
t=h

rt(st, at) ∣ sh = s, ah = a, at ∼ πt(st)]

Value Function (State-value)

Q-function (Action-value)

Useful Identity For Later (Bellman Equations)

Qπ(s, a) = 𝔼 [
H

∑
h=0

r(sh, ah) ∣ s0 = s, a0 = a, ah ∼ π( ⋅ ∣ sh)]
= r(s0, a0) + ∑

(s′￼,a′￼)∈𝒮×𝒜

𝒫(s′￼ ∣ s0, a0)π(a′￼ ∣ s′￼)r(s′￼, a′￼)

= r(s0, a0) + 𝔼s′￼∼𝒫(⋅∣s0,a0)V(s′￼)
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Objective of Reinforcement Learning
argmaxθ∈Θ J(θ) = 𝔼τ∼Prπθ

μ [
H

∑
h=0

r(sh, ah) ∣ , s0 ∼ μ0(𝒮)]
where  , , and  .τ = {(sh, ah, r(sh, ah)}H

h=0
R(τ) =

H

∑
h=0

r(sh, ah) Prπθ
μ = μ0(s0)πθ(a0 ∣ s0)𝒫 (s1 ∣ s0, a0)⋯

Let’s try to compute the gradient so we can use gradient ascent

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

= 𝔼τ∼Prπθ
μ [R(τ) ∣ , s0 ∼ μ0(𝒮)] = ∑

τ

Prπθ
μ (τ) R(τ)

= ∑
τ

R(τ)∇θPrπθ
μ (τ) = ∑

τ

R(τ)Prπθ
μ (τ)∇θPrπθ

μ (τ)/Prπθ
μ (τ)

= ∑
τ

R(τ)Prπθ
μ (τ)∇θlog Prπθ

μ (τ)

= 𝔼τ∼Prπθ
μ [R(τ)∇θlog Prπθ

μ (τ) ∣ , s0 ∼ μ0(𝒮)]
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Objective of Reinforcement Learning
∇θlog Prπθ

μ (τ) = ∇θ log
H

∏
h=0

πθ (ah ∣ sh) 𝒫 (sh+1 ∣ sh, ah) = ∇θ

H

∑
h=0

[log πθ (ah ∣ sh) + log 𝒫 (sh+1 ∣ sh, ah)]

=
H

∑
h=0

[∇θlog πθ (ah ∣ sh) + ∇θlog 𝒫 (sh+1 ∣ sh, ah)]

=
H

∑
h=0

∇θlog πθ (ah ∣ sh)
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Objective of Reinforcement Learning
argmaxθ∈Θ J(θ) = 𝔼τ∼Prπθ

μ [
H

∑
h=0

r(sh, ah) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ [R(τ) ∣ , s0 ∼ μ0(𝒮)]

where  , , and  .τ = {(sh, ah, r(sh, ah)}H
h=0

R(τ) =
H

∑
h=0

r(sh, ah) Prπθ
μ = μ0(s0)πθ(a0 ∣ s0)𝒫 (s1 ∣ s0, a0)⋯

Let’s try to compute the gradient so we can use gradient ascent

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

R(τ)∇θPrπθ
μ (τ) = ∑

τ

R(τ)Prπθ
μ (τ)∇θPrπθ

μ (τ)/Prπθ
μ (τ)

= 𝔼τ∼Prπθ
μ [R(τ)∇θlog Prπθ

μ (τ) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [R(τ)

H

∑
h=0

∇θlog πθ (ah ∣ sh) ∣ , s0 ∼ μ0(𝒮)]
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Objective of Reinforcement Learning
argmaxθ∈Θ J(θ) = 𝔼τ∼Prπθ

μ [
H

∑
h=0

r(sh, ah) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ [R(τ) ∣ , s0 ∼ μ0(𝒮)]

where  , , and  .τ = {(sh, ah, r(sh, ah)}H
h=0

R(τ) =
H

∑
h=0

r(sh, ah) Prπθ
μ = μ0(s0)πθ(a0 ∣ s0)𝒫 (s1 ∣ s0, a0)⋯

Let’s try to compute the gradient so we can use gradient ascent

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

R(τ)∇θPrπθ
μ (τ) = ∑

τ

R(τ)Prπθ
μ (τ)∇θPrπθ

μ (τ)/Prπθ
μ (τ)

= 𝔼τ∼Prπθ
μ [R(τ)∇θlog Prπθ

μ (τ) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [R(τ)

H

∑
h=0

∇θlog πθ (ah ∣ sh) ∣ , s0 ∼ μ0(𝒮)]

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)
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Objective of Reinforcement Learning
argmaxθ∈Θ J(θ) = 𝔼τ∼Prπθ

μ [
H

∑
h=0

r(sh, ah) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ [R(τ) ∣ , s0 ∼ μ0(𝒮)]

where  , , and  .τ = {(sh, ah, r(sh, ah)}H
h=0

R(τ) =
H

∑
h=0

r(sh, ah) Prπθ
μ = μ0(s0)πθ(a0 ∣ s0)𝒫 (s1 ∣ s0, a0)⋯

Let’s try to compute the gradient so we can use gradient ascent

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

R(τ)∇θPrπθ
μ (τ) = ∑

τ

R(τ)Prπθ
μ (τ)∇θPrπθ

μ (τ)/Prπθ
μ (τ)

= 𝔼τ∼Prπθ
μ [R(τ)∇θlog Prπθ

μ (τ) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [R(τ)

H

∑
h=0

∇θlog πθ (ah ∣ sh) ∣ , s0 ∼ μ0(𝒮)]

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

Impractical to compute this in practice! Relies 
on understanding the initial state distribution, 

the action selection by the policy, and the 
dynamics of the MDP.
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Objective of Reinforcement Learning
argmaxθ∈Θ J(θ) = 𝔼τ∼Prπθ

μ [
H

∑
h=0

r(sh, ah) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ [R(τ) ∣ , s0 ∼ μ0(𝒮)]

where  , , and  .τ = {(sh, ah, r(sh, ah)}H
h=0

R(τ) =
H

∑
h=0

r(sh, ah) Prπθ
μ = μ0(s0)πθ(a0 ∣ s0)𝒫 (s1 ∣ s0, a0)⋯

Let’s try to compute the gradient so we can use gradient ascent

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

R(τ)∇θPrπθ
μ (τ) = ∑

τ

R(τ)Prπθ
μ (τ)∇θPrπθ

μ (τ)/Prπθ
μ (τ)

= 𝔼τ∼Prπθ
μ [R(τ)∇θlog Prπθ

μ (τ) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [R(τ)

H

∑
h=0

∇θlog πθ (ah ∣ sh) ∣ , s0 ∼ μ0(𝒮)]
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Objective of Reinforcement Learning
argmaxθ∈Θ J(θ) = 𝔼τ∼Prπθ

μ [
H

∑
h=0

r(sh, ah) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ [R(τ) ∣ , s0 ∼ μ0(𝒮)]

where  , , and  .τ = {(sh, ah, r(sh, ah)}H
h=0

R(τ) =
H

∑
h=0

r(sh, ah) Prπθ
μ = μ0(s0)πθ(a0 ∣ s0)𝒫 (s1 ∣ s0, a0)⋯

Let’s try to compute the gradient so we can use gradient ascent

∇θJ(θ) = ∇θ ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

Prπθ
μ (τ) R(τ)

= ∑
τ

R(τ)∇θPrπθ
μ (τ) = ∑

τ

R(τ)Prπθ
μ (τ)∇θPrπθ

μ (τ)/Prπθ
μ (τ)

= 𝔼τ∼Prπθ
μ [R(τ)∇θlog Prπθ

μ (τ) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [R(τ)

H

∑
h=0

∇θlog πθ (ah ∣ sh) ∣ , s0 ∼ μ0(𝒮)]
No need to understand the dynamics of the 
MDP or the initial state distribution. Simply 
sample trajectories from the current policy, 

compute the log of the gradient, do a Monte-
Carlo estimate of the expectation, and update 

the policy via gradient ascent 

This is called REINFORCE
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Issues With REINFORCE

Reward = 1
1+Manhattan ( ),

α β− 1
1+Manhattan ( ),
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Issues With REINFORCE

Reward = 1
1+Manhattan ( ),

α β− 1
1+Manhattan ( ),
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Issues With REINFORCE

Reward = 

Reward =  
1
4

α −
1
9

β

1
1+Manhattan ( ),

α β− 1
1+Manhattan ( ),
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Issues With REINFORCE

1
1+Manhattan ( ),

α β− 1
1+Manhattan ( ),

Reward = 
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Issues With REINFORCE

Reward = 

Reward =  
1
8

α −
1
2

β

1
1+Manhattan ( ),

α β− 1
1+Manhattan ( ),



1
1+Manhattan ( ),

α β− 1
1+Manhattan ( ),
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Issues With REINFORCE

Reward = 

Reward =  
1
8

α −
1
2

β

Just like a lot of Monte-Carlo sampling 
methods, REINFORCE is prone to high 

variance in the gradient estimates!
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All You Need Is A Baseline!
Consider a function  where the samples used to construct  are independent of . Then, notice thatf : 𝒮 → ℝ f τ

𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh)
H

∑
h′￼=0

f(sh′￼) ∣ , s0 ∼ μ0(𝒮)] =
H

∑
h=0

∫τ (
H

∑
h′￼=0

f(sh′￼)) πθ (ah ∣ sh)∇θlog πθ (ah ∣ sh) dτ

=
H

∑
h=0 (

H

∑
h′￼=0

f(sh′￼))∫τ
πθ (ah ∣ sh)∇θlog πθ (ah ∣ sh) dτ

=
H

∑
h=0 (

H

∑
h′￼=0

f(sh′￼))∫τ
∇θπθ (ah ∣ sh) dτ

=
H

∑
h=0 (

H

∑
h′￼=0

f(sh′￼))∇θ ∫τ
πθ (ah ∣ sh) dτ

= 0

𝔼τ∼Prπθ
μ [R(τ)

H

∑
h=0

∇θlog πθ (ah ∣ sh) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′￼=0

r(sh′￼, ah′￼) − f(sh′￼)) ∣ , s0 ∼ μ0(𝒮)⟹
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All You Need Is A Baseline!
𝔼τ∼Prπθ

μ [
H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′￼=0

r(sh′￼, ah′￼) − f(sh′￼)) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
h−1

∑
h′￼=0

r(sh′￼, ah′￼) − f(sh′￼)) ∣ , s0 ∼ μ0(𝒮)] 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′￼=h

r(sh′￼, ah′￼) − f(sh′￼)) ∣ , s0 ∼ μ0(𝒮)]+

If we want to understand the influence of taking action  at state , 
we do not care about the past i.e. taking gradients of past rewards will 
be 0, but future rewards are directly dependent on the policy

ah sh

⟹ 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′￼=0

r(sh′￼, ah′￼) − f(sh′￼)) ∣ , s0 ∼ μ0(𝒮)] 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′￼=h

r(sh′￼, ah′￼) − f(sh′￼)) ∣ , s0 ∼ μ0(𝒮)]=
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Advantage Actor-Critic (A2C)
Take  as our baseline. Then we havef(s) = Vπprev

θ (s)

=𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′￼=h

r(sh′￼, ah′￼) − f(sh′￼)) ∣ , s0 ∼ μ0(𝒮)] 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′￼=h

r(sh′￼, ah′￼) − Vπprev
θ (sh′￼)) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) A(sh, ah) ∣ , s0 ∼ μ0(𝒮)]

where A(sh, ah) =
H

∑
h′￼=h

r(sh′￼, ah′￼) − Vπprev
θ (sh′￼) = Q(sh, ah) − V(sh)

Do we need to learn both?
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Advantage Actor-Critic (A2C)
Take  as our baseline. Then we havef(s) = Vπprev

θ (s)

=𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′￼=h

r(sh′￼, ah′￼) − f(sh′￼)) ∣ , s0 ∼ μ0(𝒮)] 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′￼=h

r(sh′￼, ah′￼) − Vπprev
θ (sh′￼)) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) A(sh, ah) ∣ , s0 ∼ μ0(𝒮)]

where A(sh, ah) =
H

∑
h′￼=h

r(sh′￼, ah′￼) − Vπprev
θ (sh′￼) = Q(sh, ah) − V(sh)

Do we need to learn both?

Recall our identity 

Qπ(s, a) = r(s0, a0) + 𝔼s′￼∼𝒫(⋅∣s0,a0)V(s′￼)
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Take  as our baseline. Then we havef(s) = Vπprev
θ (s)

𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′￼=h

r(sh′￼, ah′￼) − f(sh′￼)) ∣ , s0 ∼ μ0(𝒮)] = 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) (
H

∑
h′￼=h

r(sh′￼, ah′￼) − Vπprev
θ (sh′￼)) ∣ , s0 ∼ μ0(𝒮)]

= 𝔼τ∼Prπθ
μ [

H

∑
h=0

∇θlog πθ (ah ∣ sh) A(sh, ah) ∣ , s0 ∼ μ0(𝒮)]

Recall our identity 

Qπ(s, a) = r(s0, a0) + 𝔼s′￼∼𝒫(⋅∣s0,a0)V(s′￼)

where A(sh, ah) =
H

∑
h′￼=h

r(sh′￼, ah′￼) − Vπprev
θ (sh′￼) = Q(sh, ah) − V(sh)

= r(sh, ah) + V(sh+1) − V(sh)

It is sufficient to learn the 
reward model + the value 

function

Advantage Actor-Critic (A2C)
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Other Policy Gradient Algorithms

Trust-Region Policy Optimization (TRPO): maxθ 𝔼τ∼Pr
πθh
μ

∞

∑
h=0

Aπθh(sh, ah) : DKL (Prπθh
μ | |PrπθSFT

μ ) ≤ δ

Proximal Policy Optimization (PPO): maxθ 𝔼τ∼Pr
πθh
μ

∞

∑
h=0

Aπθh(sh, ah) : sups∈𝒮 | |πθh ( ⋅ ∣ s) − πθSFT ( ⋅ ∣ s) | |TV ≤ δ
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Other Policy Gradient Algorithms

Trust-Region Policy Optimization (TRPO): 

Proximal Policy Optimization (PPO):

maxθ 𝔼τ∼Pr
πθh
μ

∞

∑
h=0

Aπθh(sh, ah) : DKL (Prπθh
μ | |PrπθSFT

μ ) ≤ δ

maxθ 𝔼τ∼Pr
πθh
μ

∞

∑
h=0

Aπθh(sh, ah) : sups∈𝒮 | |πθh ( ⋅ ∣ s) − πθSFT ( ⋅ ∣ s) | |TV ≤ δ

L(θ) = 𝔼τ∼Pr
πθh
μ

∞

∑
h=0

min (
πθh

(a |s)
πSFT(a |s)

Aπθh(sh, ah), clip(
πθh

(a |s)
πSFT(a |s)

; 1 − ϵ,1 + ϵ)Aπθh(sh, ah))

This can be approximated as
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DeepSeek-R1: How Does This Relate?

LGRPO(θ) = 𝔼q∼P(Q)𝔼τ∼Pr
πθold
μ

∞

∑
h=0

min (
πθold

(a |s)
πSFT(a |s)

Aπθh(sh, ah), clip(
πθold

(a |s)
πSFT(a |s)

; 1 − ϵ,1 + ϵ)Aπθh(sh, ah))

One of the many innovative things that R1 does is called Group-Relative Policy Optimization (GRPO)

where we compute the advantage  as follows: for a group of  sampled trajectories ,Aπθh(sh, ah) G {τi}G
i=1

Aπθh(sh, ah) =
R(τh) − 1

G ∑G
i=1 R(τi)

1
G ∑G

i=1 (R(τi) − 1
G ∑G

j=1 R(τj))2 + η

Doing this allows us to circumvent training a value-function model! 
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Summary of RLHF

Diagram Credit: Foundations of Large Language Models by Xiao and 
Zhu
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Resources To Learn More

Comprehensive Overview of DeepSeek-R1

Reinforcement Learning: Theory and Algorithms

Foundations of Large Language Models   

https://aman.ai/primers/ai/deepseek-R1/#group-relative-policy-optimization-grpo
https://rltheorybook.github.io/
https://arxiv.org/abs/2501.09223

