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Abstract

Motivated by the recent adoption of reinforcement learning (RL) in personal-
ized decision making that relies on using users’ sensitive and private informa-
tion, we study regret minimization in the episodic inhomogeneous linear Markov
Decision Process (MDP) setting where the transition probabilities and reward
functions are linear with respect to some feature mapping ϕ(s, a) under the
constraints of differential privacy (DP) and more specifically, a relaxation of
DP that is compatible with online-learning settings called joint differential pri-
vacy (JDP). Prior work due to [Luyo et al. 2021,] in this setting achieves a
rate of Õ(

√
d3H4K + H11/5d8/5K3/5/ϵ2/5) and was subsequently improved

to Õ(
√
d3H4K +H3d5/4K1/2/ϵ1/2) by [Ngo et al. 2022,]. This bounds rely on

Õ(
√
d3H4K) dependence, the cost of non-private learning, that arises from the re-

gret achieves by LSVI-UCB [Jin et al. 2020,]. Recently, [He et al. 2023,] proposed
LSVI-UCB++, a minimax optimal algorithm that achieves regret Õ(HD

√
T ) for

the episodic inhomogeneous linear MDP setting using weighted ridge regression
and upper confidence value iteration with a Bernstein-type exploration bonus. Ad-
ditionally, prior work primarily utilized Hoeffding-type bounds, which are easier
to use in analysis but result in suboptimal regret bounds. [Qiao and Wang 2024,]
advanced this area by applying Bernstein-type bounds to more effectively con-
trol regret for linear MDPs in the offline setting. Inspired by these works, we
design an RL algorithm with differential privacy guarantees in the linear MDP
setting by privatizing LSVI-UCB++, utilizing the techniques found in [Qiao and
Wang 2024,]. This algorithm achieves regret Õ

(
d
√
H3K +H18/4d7/6K1/2/ϵ

)
which surpasses previous state-of-the-art algorithms for linear MDPs. We also find
that theory and simulation suggest that the privacy guarantee comes at (almost) no
drop in utility compared to the non-private counterpart.

1 Introduction

Reinforcement Learning (RL) has started gaining traction in settings involving personalized decision-
making such as precision medicine [Yazzourh et al. 2024, Liu et al. 2022,], user experience adaption
[Khamaj and Ali 2024,], recommender systems [Afsar et al. 2022,], and autonomous driving [Sallab
et al. 2017,]. In such settings, agents learn reasonable policies by learning from potentially private
and sensitive user feedback and data. For example, imagine a health-focused mobile application
designed to help users adopt a healthier lifestyle by recommending daily activities tailored to their
needs and goals. This agent learns an optimal policy by observing user feedback, such as completion
rates of recommended activities, user satisfaction ratings, and other behavioral signals. This process



inherently involves sensitive data—information that users may consider private, such as their age,
weight, location, health habits, and physical activity levels. [Hartley et al. 2023,] recently showed
that patient information can be memorized by agents even when it occurs on a single training data
sample within the dataset.

To safeguard users’ privacy, it’s essential to incorporate privacy-preserving mechanisms into the RL
framework. Differential Privacy (DP) [Dwork et al. 2006b,] has emerged as a rigorous mathematical
notion of privacy in algorithms. The guarantee of a differentially private RL algorithm is that its
behavior hardly changes when a single individual joins or leaves the dataset. It turns out for problems
in this RL setting, the standard definition of DP is too stringent since it necessarily implies that in
a setting where a user trusts an central agency with sensitive information in exchange for a service
or recommendation, none of the agent’s recommendations could reveal information about the user.
Completely eliminating information about a user’s data would make it impossible for the agent to
make useful recommendations or actions.

We rely on a Joint Differential Privacy (JDP), a relaxed notion of DP [Kearns et al. 2015,]. JDP
requires that if any single user changes their data, the information observed by all the other users
cannot change substantially and has been adapted in the context of differentially private contextual
bandits [Shariff and Sheffet 2018,]. There has been a line of literature that attempts to tackle
incorporating JDP into RL algorithms in the linear MDP setting. The first work that we are aware of is
[Luyo et al. 2021,] who privatize LSVI-UCB [Jin et al. 2020,] to get a regret bound of Õ(

√
d3H4K+

H11/5d8/5K3/5/ϵ2/5). This was subsequently improved to Õ(
√
d3H4K +H3d5/4K1/2/ϵ1/2) by

Ngo et al. [2022] through more refined analysis. Both these works rely on self-normalizing martingale
concentration bounds, notably Azuma-Hoeffding, for their regret analysis. This allows for the analysis
to be simple but results in suboptimal regret bounds.

Recently, [Qiao and Wang 2024,] were able to apply self-normalized Bernstein-type martingale
bounds with sharper analysis to more effectively control regret for linear MDPs in the offline
setting. Additionally, [He et al. 2023,] proposed LSVI-UCB++, a minimax optimal algorithm that
achieves regret Õ(HD

√
T ) for the episodic inhomogeneous linear MDP setting using weighted

ridge regression and upper confidence value iteration with a Bernstein-type exploration bonus which
improved on LSVI-UCB.

Our contributions. Inspired by these works, we design an RL algorithm with differential privacy
guarantees in the linear MDP setting by privatizing LSVI-UCB++, utilizing the techniques found in
[Qiao and Wang 2024,].

• We propose the DP-LSVI-UCB++ algorithm, which achieves a regret bound of
Õ
(
d
√
H3K +H18/4d7/6K1/2/ϵ

)
, surpassing the previous state-of-the-art bounds for

linear MDPs under JDP constraints.

• LSVI-UCB++ framework, we integrate private mechanisms such as Gaussian noise and Gaus-
sian Orthogonal Ensemble (GOE) perturbations of Gram matrices, enabling the preservation
of privacy while maintaining strong utility guarantees.

• Our analysis employs Bernstein-type martingale concentration inequalities, unlike prior
approaches relying on Hoeffding-type bounds, leading to tighter and more efficient regret
guarantees.

• We provide empirical simulations that demonstrate the effectiveness of DP-LSVI-UCB++,
showcasing (almost) no drop in utility compared to its non-private counterpart across various
privacy budgets.

1.1 Related work

Tabular MDPs: The intersection of DP and RL has been explored within the context of tabular
MDPs. In these cases, DP is often achieved through privatization of visitation counts, which ensures
that sensitive trajectory data remains protected. Under the constraint of JDP, [Vietri et al. 2020,]
designed PUCB by privatizing UBEV [Dann et al. 2017,], and [Chowdhury and Zhou 2022,] devised
Private-UCB-VI by privatizing UCBVI (with bonus 1) [Azar et al. 2017,], an algorithm with a
minimax optimal regret bound in the tabular MDP setting. However, these works primarily utilized
Hoeffding-type bounds, which are easier to use in analysis but result in suboptimal regret bounds.
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[Qiao and Wang 2024,] advanced this area by applying Bernstein-type bounds to more effectively
control regret, and Qiao and Wang [2023] designed DP-UCBVI by privatizing UCBVI with bonus 2
[Azar et al. 2017,].

Linear Mixture MDPs: There has been some work in the Linear Mixture MDP setting. Under
JDP, [Luyo et al. 2021,] devised JDP-UCRL-VTR by privatizing UCRL-VTR [Ayoub et al. 2020,]
with a regret bound Õ(

√
d2H4K + H9/4d3/4K1/2/ϵ1/2) where K is the number of episodes.

[Zhou 2022,] improved on this bound with Private-LinOpt-VI to guarantee JDP with a regret bound
of Õ(

√
d2H4K +H5/2d7/4K1/2/ϵ1/2).

Linear MDPs: There has also been some work in linear MDPs. Under JDP, [Luyo et al. 2021,]
devised Privacy-Preserving LSVI-UCB Through Batching by privatizing LSVI-UCB [Jin et al. 2020,],
and achieved a regret bound of Õ(

√
d3H4K+H11/5d8/5K3/5/ϵ2/5) by utilizing standard differential

private techniques such as the binary tree mechanism [Shariff and Sheffet 2018, Dwork et al. 2010,
Chan et al. 2011,] and Gaussian mechanism [Dwork and Roth 2014,]. [Ngo et al. 2022,] improved on
this bound, achieving Õ(

√
d3H4K +H3d5/4K1/2/ϵ1/2) regret by utilizing an adaptive batching

schedule to reduce the number of policy updates from polynomial in K to O(log(K)).

2 Problem Setup

Markov Decision Process. We will work with the episodic inhomogeneous finite horizon MDP
M = {S,A, {Ph}h, {rh}h} where S,A is the state and action space respectively, H ∈ Z is the
length of each episode, Ph : S × A → ∆(S) and rh : S × A → [0, 1] are the time-dependent
transition probability and deterministic reward function. We assume that S is a measurable space with
possibly infinite number of elements and A is a finite set. In this setting, the policy is time-dependent
and we denote this π = {π1, · · · , πH} where πh(s) denotes the action the policy takes in state s at
timestep h. With this, we define the time-dependent value function V π

h : S → R as

V π
h (s) = E

[
H∑
t=h

rt(st, at) | sh = s, at ∼ πt(st)

]

for any s ∈ S, h ∈ [H]. Likewise, we can define the state-action function Qπ
h : S ×A → R as

Qπ
h(s, a) = E

[
H∑
t=h

rt(st, at) | sh = s, ah = a, at ∼ πt(st)

]

for any s, a ∈ S ×A, h ∈ [H]. Since we are working in a finite episode length and action space, we
know that there exists an optimal policy π∗ such that V ∗

h (s) = supπV
π
h (s) for any s ∈ S, h ∈ [H]

with Bellman equations

Q∗
h(s, a) = rh(s, a) + PhV

∗
h+1(s, a)

V ∗
h (s, a) = maxa∈AQ

∗
h(s, a)

where PhV (s, a) = Es′∼Ph
(·|s, a)V (s′). We measure the performance of online reinforcement

learning algorithms by the regret. The regret of an algorithm is defined as

Regret(K) =

K∑
k=1

[
V ∗
1

(
sk1
)
− V πk

1

(
sk1
)]

where s1 is the initial state and πk is the agent, both during episode k.

Linear MDP [Jin et al. 2020,]. A finite-horizon MDPM = {S,A, {Ph}h, {rh}h} is a linear MDP
with known feature map ϕ : S×A → Rd if for any h ∈ [H], there exists |S| unknown d-dimensional
measures µh = (µh(1), · · · , µh(|S|)) ∈ Rd×|S| and an unknown vector θh ∈ Rd such that for any
(s, a) ∈ S ×A, we have
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Ph (· | s, a) = ⟨ϕ(s, a),µh(·)⟩, rh(s, a) = ⟨ϕ(s, a),θh(s, a)⟩
Without loss of generality, we assume that ||ϕ(s, a)||2 < 1 and max (||µh (S) ||2, ||θh||2) ≤

√
d for

all s, a, h ∈ S ×A× [H].

2.1 Differential Privacy

In this work, we are interested in providing a privacy-preserving RL algorithm that incorporates the
rigorous notion of differential privacy (DP). We first revisit the definition of differential privacy
Definition 2.1 (Differential Privacy [Dwork et al. 2006a,]). A randomized mechanism A satisfies
(ϵ, δ)-differential privacy if for all neighboring datasets U ,U ′ that differ by one record and for all
event E in the output range

P (A(U) ∈ E) ≤ eϵP (A(U ′) ∈ E) + δ

When δ = 0, we say that our mechanism satisfies ϵ-pure DP whereas for δ > 0, we say our mechanism
satisfies (ϵ, δ)-DP.

As we discussed in the introduction, standard DP is too stringent of a framework to work in for the
RL setting. Thus, we use JDP as a relaxed but still strong notion of privacy
Definition 2.2 (Joint Differential Privacy [Kearns et al. 2015,]). For any ϵ > 0, a randomized
mechanism A : U → AKH is ϵ-joint differentially private if for any k ∈ [K], any user sequences
U ,U ′ differing on the k-th user and any E ⊂ A(K−1)H

P (A−k(U) ∈ E) ≤ eϵP (A−k(U ′) ∈ E)

where A−k(U) ∈ E denotes the sequence of actions recommended to all users except user k belong
to the set E.

While we state our main results in terms of JDP, we will also use zero-Concentrated DP (zCDP) as
a tool in our analysis, since it enables cleaner analysis for privacy composition and the Gaussian
mechanism.
Definition 2.3 (zCDP [Dwork and Rothblum 2016, Bun and Steinke 2016,]). A randomized mecha-
nism A satisfies ρ-Zero-Concentrated Differential Privacy (ρ-zCDP), if for all neighboring datasets
U , U ′ and all α ∈ (1,∞),

Dα (A (U) || A (U ′)) ≤ ρα

where Dα is the Renyi-divergence [van Erven and Harremoës 2012,]

Any algorithm that satisfies ρ-zCDP also satisfies approximate-DP. The following proposition from
[Bun and Steinke 2016,] shows how to do the mapping between zCDP and approximate-DP.
Lemma 2.1 (Converting zCDP to DP [Bun and Steinke 2016,]). If mechanism A satisfies ρ-zCDP,
then A satisfies

(
ρ+ 2

√
ρ log (1/δ), δ

)
-DP.

Another simple and important property of zCDP is that compositions of zCDP mechanisms is also
zCDP and any post-processing will not affect the privacy guarantees.
Lemma 2.2 (Adaptive composition and Post processing of zCDP [Bun and Steinke 2016,]). Let
A : Xn → Y and A′ : Xn × Y → Z . Suppose A satisfies ρ-zCDP and A′ satisfies ρ′-zCDP. Define
A′′ : Xn → Z to be A′′ (x) = A′ (x,A(x)). Then, A′′ is (ρ+ ρ′)-zCDP.

To apply DP techniques to some mechanism, we must know the sensitivity of the function we want to
release. Here we give the definition and the notation we use.
Definition 2.4 (l2-sensitivity). Let U ∼ U ′ be neighboring datasets. Then the l2-sensitivity of a
function f : NX → Rd is

∆(f) = maxU∼U ′ ||f (U)− f (U ′) ||2
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In our analysis, we use the Gaussian mechanism:

Lemma 2.3 (Privacy guarantee of Gaussian mechanism [Dwork and Roth 2014, Bun and
Steinke 2016,]). Let f : NX → Rd be an arbitrary d-dimensional function with l2 sensitivity
∆2. The Gaussian MechanismM with noise level σ is given by

M (U) = f (U) +N
(
0, σ2Id

)
For any ρ > 0, a Gaussian Mechanism with noise parameter σ2 =

∆2
2

2ρ is ρ-zCDP. Additionally,

for all 0 < δ, ϵ < 1, a Gaussian Mechanism with noise parameter σ = ∆2

ϵ

√
2 log

(
1.25
δ

)
satisfies

(ϵ, δ)-DP.

Lastly, we use the following lemma to conclude that our algorithm is indeed joint differentially private

Lemma 2.4 (Billboard lemma [Hsu et al. 2013,]). Suppose that a randomized mechanism A : Xn →
Y is (ϵ, δ)-differentially private. Let U ∈ U be a dataset containing n users. Then, consider any
set of functions fi : Ui × Y → Yi for i ∈ [n] where Ui is the portion of the dataset containing user
i’s data. Then, the composition {fi (Πi (U) , A (U))}i∈[n] is (ϵ, δ)-JDP where Π : U → Ui is the
canonical projection to the i-th user’s data.

3 Main results

We now introduce our RL algorithm for linear MDPs with a JDP guarantee. We will first revisit the
non-private version of LSVI-UCB++ proposed by [He et al. 2023,] and then we will propose our
algorithm along with the techniques used to privatize LSVI-UCB++ with a desirable privacy-accuracy
tradeoff.

LSVI-UCB++. To estimate the parameter µh in linear MDPs, the LSVI-UCB++ algorithm employs a
weighted ridge regression approach:

Λk,h = λI +

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)ϕ(s

i
h, a

i
h)

⊤,

pwk,h = (Λk,h)
−1

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)

pVk,h+1(s
i
h+1),

qwk,h = (Λk,h)
−1

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)

qVk,h+1(s
i
h+1),

wk,h = Λ̃−1
k,h

k−1∑
i=1

σ̄−2
i,hϕ

(
sih, a

i
h

)
pVk,h+1(s

i
h+1)

2

where σ̄i,h represents the variance of the optimal value function and is updated iteratively. This
weighting by variance improves estimation accuracy by incorporating information about uncertainty.
The optimistic and pessimistic value functions are updated as:

pQk,h(s, a) = rh(s, a) + pw⊤
k,hϕ(s, a) +

pβ∥ϕ(s, a)∥Λ−1
k,h

,

qQk,h(s, a) = rh(s, a) + qw⊤
k,hϕ(s, a)− qβ∥ϕ(s, a)∥Λ−1

k,h
,

with the corresponding state-value functions:

pVk,h(s) = max
a∈A

pQk,h(s, a), qVk,h(s) = max
a∈A

qQk,h(s, a).

Here, pβ and qβ determine the exploration bonuses, designed using Bernstein-type bounds. To ensure
that the variance used for weighting in the ridge regression remains stable and avoids underestimation,
we define a regularized variance for weighing:
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σ̄k,h = max{σk,h, H, 2d3H2∥ϕ(shk , ahk)∥
1/2

Λ−1
k,h

}

where the estimated variance σk,h of the state-value function is

σk,h =

√
Vk,h

pVk,h+1(skh, a
k
h) + Ek,h +Dk,h +H

where we estimate the variance itself as

Vk,h
pVk,h+1(s

k
h, a

k
h) =

[
w⊤

k,hϕ
(
skh, a

k
h

)]
[0,H2]

−
[

pw⊤
k,hϕ

(
skh, a

k
h

)]2
[0,H]

Here, Ek,h is the error between the estimated variance and the true variance of Vk,h+1, and Dk,h is
the error between the variance of Vk,h+1 and the variance of the optimal value function V ∗

h
1. When

privatizing LSVI-UCB++, we aim to privatize the individual statistics involved in making our final
estimate pwk,h.

Private Model Components. In order to ensure differential privacy, the technique that we commonly
employ in differential privacy is to cleverly add noise such that we achieve ρ-zCDP, but we also
have utility of the specific statistics i.e. the private statistic is close to the non-private statistic with
high probability. We add independent Gaussian noise to the 4HK statistics in DP-LSVI-UCB++

(Algorithm 1). Then, by the adaptive composition of zCDP (Lemma 2.2), it suffices to ensure
that each statistic is ρ0-zCDP where ρ0 = ρ

4HK . In particular, in DP-LSVI-UCB++, we utilize
ϕ1, ϕ2, ϕ3,K1 to denote the noise that we add. For all ϕi, we simply utilize the Gaussian Mechanism
(Lemma 2.3). For K1, we utilize a recent result by [Redberg and Wang 2021,] to release the Gram
matrix using the GOE perturbations of the form 1√

2

(
Z + Z⊤). We also add 2λ̃Λ to ensure that K1

remains positive definite as the noise added violates this condition which we require for invertibility.
In past literature, many resort to using a binary tree mechanism for privatizing the Gram matrix by
recursively partitioning and privatizing partial sums. We find that privatization through GOE is better
suited for this setting as it directly exploits their symmetry, yielding tighter utility bounds for the
same privacy guarantees. We now present DP-LSVI-UCB++ (Algorithm 1)

Algorithm 1 DP-LSVI-UCB++

Require: Confidence radius pβ, qβ, β̃, Budget for zCDP ρ, Failure probability δ

1: Set ρ0 ← ρ
4HK . Sample ϕ1, ϕ2 ∼ N

(
0, 2H2

ρ0
Id

)
, ϕ3 ∼ N

(
0, 2H4

ρ0
Id

)
, K1 ← 1√

2

(
Z + Z⊤)

where Zi,j ∼ N
(
0, 1

4ρ0

)
, λ̃Λ = O

(√
dHK

ρ

)
. Initialize klast = 0 and for each stage h ∈ [H],

set Λ̃0,h, Λ̃1,h ← 2λ̃ΛI

2: For each stage h ∈ [H] and state-action (s, a) ∈ S ×A, set pQ0,h(s, a)← H , qQ0,h(s, a)← 0
3: for episodes k = 1, . . . ,K do
4: Receive the initial state s1k
5: for stage h = H, . . . , 1 do
6: p̃wk,h ← Λ̃−1

k,h

[∑k−1
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)
p̃Vk,h+1(s

i
h+1) + ϕ1

]
7: q̃wk,h ← Λ̃−1

k,h

[∑k−1
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)
q̃Vk,h+1(s

i
h+1) + ϕ2

]
8: w̃k,h ← Λ̃−1

k,h

[∑k−1
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)
p̃Vk,h+1(s

i
h+1)

2 + ϕ3

]
9: Vk,h

p̃Vk,h+1(s
k
h, a

k
h)←

[
w̃

⊤
k,hϕ

(
skh, a

k
h

)]
[0,H2]

−
[

p̃w⊤
k,hϕ

(
skh, a

k
h

)]2
[0,H]

10: if there exists a stage h′ ∈ [H] such that det(Λ̃k,h′) ≥ 2 det(Λ̃klast,h′) then
11: p̃Qk,h(s, a)← min

{
rh(s, a) + p̃w⊤

k,hϕ (s, a) + pβ||ϕ (s, a) ||Λ̃−1
k,h

, p̃Qk−1,h (s, a) , H
}

12: q̃Qk,h(s, a)← min
{
rh(s, a) + q̃w⊤

k,hϕ (s, a) + qβ||ϕ (s, a) ||Λ̃−1
k,h

, q̃Qk−1,h (s, a) , 0
}

13: klast ← k
14: else
15: p̃Qk,h(s, a) = p̃Qk−1,h(s, a)

1For more details about the LSVI-UCB++, refer to [He et al. 2023,]
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16: q̃Qk,h(s, a) = q̃Qk−1,h(s, a)
17: end if
18: p̃Vk,h(s) = maxa∈A p̃Qk,h(s, a)

19: q̃Vk,h(s) = maxa∈A q̃Qk,h(s, a)

20: π̃k,h(s) = argmaxa∈A
p̃Qk,h(s, a)

21: end for
22: for stage h = 1, . . . ,H do
23: Take action ahk ← argmaxa Qk,h(s

h
k , a)

24: σ̃k,h ←
√
Vk,h

p̃Vk,h+1(skh, a
k
h) + Ek,h +Dk,h +H

25: ˜̄σk,h ← max{σ̃k,h, H, 2d3H2∥ϕ(shk , ahk)∥
1/2

Λ̃−1
k,h

}

26: Λ̃k+1,h = Λ̃k,h + ˜̄σ−2
k,hϕ(s

h
k , a

h
k)ϕ(s

h
k , a

h
k)

⊤ +K1

27: Receive next state sh+1
k

28: end for
29: end for

If one looks at the LSVI-UCB++ algorithm and compares it to our algorithm, one will notice that
this algorithm is very similar except instead of using the raw statistics, we replace them with private
ones as we described above. Since our algorithms are the same, most of the analysis carried out will
be similar except that we will use the utility of the privatized statistics. We now present the privacy
guarantee of DP-LSVI-UCB++:
Theorem 3.1 (Privacy Guarantee). DP-LSVI-UCB++ (Algorithm 1) satisfies (ϵ, δ′)-JDP.

Proof of Theorem 3.1. For the full proof, refer to Appendix A, particularly Theorem A.1. Note that
we use δ′ to distinguish between the δ′ failure probability of the JDP-mechanism and the δ high
probability bounds we get in our regret analysis. At a high level, we first compute the sensitivity
of our privatized statistics. With these sensitivities, we simply use a Gaussian mechanism with
sufficient noise using Lemma 2.3. Doing this allows us to show that each of our privatized statistics
is ρ0-zCDP so by advanced composition (Lemma 2.2), we can conclde that DP-LSVI-UCB++ is
ρ-zCDP. Using Lemma 2.1, we can show Algorithm 1 is (ϵ, δ′)-DP. Finally, since the actions sent to
each user depends on a function constructed with DP and their private data only, we can conclude
that DP-LSVI-UCB++ is (ϵ, δ′)-JDP by the Billboard Lemma (Lemma 2.4).

Theorem 3.2. For any linear MDPM, if we set the confidence radii pβ, qβ, β as follows:

pβ = O

(
HL

√
dλ̃Λ +

√
d3H2 log2

(
HK4L2d

δλ̃Λ

))
,

qβ = O

(
HL

√
dλ̃Λ +

√
d3H2 log2

(
HK4L2d

δλ̃Λ

))
,

β̄ = O

(
H2L2

√
dλ̃Λ +

√
d3H4 log2

(
HK4L2d

δλ̃Λ

))
,

then with high probability of at least 1 − 7δ, the regret of DP-LSVI-UCB++ is upper bounded as
follows:

Regret(K) ≤ Õ

(
d
√
H3K +

H18/4d7/6K1/2 log(1/δ′)

ϵ

)
In addition, the number of updates for p̃Qk,h and q̃Qk,h is upper bounded by O(dH log(1 +K/dλ̃Λ)).

Proof of Theorem 3.2. For the full proof, refer to Appendix C, particularly Lemma C.5. At a high
level, we replicate the proofs of [He et al. 2023,] with similar function classes for the optimistic,
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pessimistic, and squared value functions except using the privatized components. We use these
function classes along with standard results for covering numbers to determine the confidence radii
(Lemma B.2), prove the upper bound of the variance estimator (Lemma B.3), prove optimism and
pessimism, and condition on these to utilize a Bernstein-bound argument to yield a tighter regret
bound. Finally, we state some results from [He et al. 2023,] that hold for our analysis and use these to
prove the regret bound.

4 Empirical simulations

We evaluate DP-LSVI-UCB++ on a synthetic linear MDP that is described in [Min et al. 2021, Yin
et al. 2022, Qiao and Wang 2024,]. In this MDP, we fix the horizon to be H = 20. We compare
our algorithm compared to LSVI-UCB, their differentially private counterparts proposed by [Luyo
et al. 2021, Ngo et al. 2022,], the non-private LSVI-UCB++, and our algorithm DP-LSVI-UCB++ in
terms of cumulative regret with a fixed privacy budget. We also compare how our regret scales with
varying privacy budgets compared to LSVI-UCB++. We ran the simulation 10 times and took the
average performance.

(a) Comparison between different algorithms, H = 20 (b) Different privacy budgets, H = 20

Key Takeaways. From Figure 1a, we can observe the DP-LSVI-UCB++ performs better compared
to the previous state-of-the-art algorithm devised by [Ngo et al. 2022,] and ofcourse also performs
better than [Luyo et al. 2021,]. Additionally, we see that DP-LSVI-UCB++ even being a privatized
algorithm, performs better than the non-private LSVI-UCB. Looking at Figure 1b, we see that as
we increase the privacy budget of DP-LSVI-UCB++, we get closer to LSVI-UCB++ and thus with
sufficient noise, we can guarantee (ϵ, δ)-JDP that will perform slightly worse than LSVI-UCB++.
This is due to the fact that we add Gaussian noise to each count. In particular, we enjoy a better regret
bound by using the GOE technique as previous state-of-the-art bounds using a binary-tree mechanism
that yields suboptimal regret for the same privacy guarantee. We also enjoy a better bound due to our
usage of rare-switching to reduce the amount of noise we added (as adding noise to every statistic
would lead to suboptimal regret). This also supports our theoretical regret bound since the cost of
privacy appears as lower order terms in the regret bound.

5 Conclusions and future works

In this work, we introduced DP-LSVI-UCB++, a differentially private reinforcement learning algo-
rithm for the linear MDP setting, achieving state-of-the-art regret bounds under joint differential
privacy (JDP) constraints. Our approach incorporates advanced techniques such as Bernstein-type
martingale concentration inequalities and GOE perturbations, enabling us to improve the utility-
privacy tradeoff while maintaining strong theoretical guarantees. The algorithm’s regret bound
Õ
(√

H3K +H19/8d15/8K3/4/ϵ
)

surpasses prior works and demonstrates that incorporating dif-
ferential privacy need not lead to substantial utility degradation. Through empirical simulations,
we verified that DP-LSVI-UCB++ achieves near-optimal performance, often matching or even out-
performing non-private baselines. We believe that there are many promising directions to explore
from our study. While our work focuses on linear MDPs, it would be valuable to extend these
techniques to the low-rank MDP setting. Additionally, our work utilized Gaussian mechanisms and
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GOE-based perturbations for privacy guarantees. Exploring alternative mechanisms that adapt noise
levels dynamically based on the observed data’s sensitivity could lead to improved regret bounds.
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A Privacy Proofs

First, we will prove the main privacy guarantee of our algorithm
Theorem A.1 (Privacy Guarantee). DP-LSVI-UCB++ (Algorithm 1) satisfies (ϵ, δ)-JDP.

Proof of Theorem A.1. In order to prove this, we must first determine the l2 sensitivity of our
privatized statistics. Consider two neighboring user sequences U , U ′. Let i ≤ k be some
episode where sih ̸= s′ih and aih ̸= a′ih where

(
sih, a

i
h

)
∈ U and

(
s′ih , a

′i
h

)
∈ U ′. Then,∑k−1

i=1
˜̄σ−2
i,hϕ

(
sih, a

i
h

)
p̃Vk,h+1(s

i
h+1) and

∑k−1
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)
q̃Vk,h+1(s

i
h+1) have l2 sensitivity of

2H . Likewise,
∑k−1

i=1
˜̄σ−2
i,hϕ

(
sih, a

i
h

)
p̃Vk,h+1(s

i
h+1)

2 has l2 sensitivity of 2H2. Thus, by using a

Gaussian mechanism with noise σ2 = 2H2

ρ0
and σ2 = 2H4

ρ0
, respectively, we are guaranteed to have

ρ0-zCDP for each of the first three terms (Lemma 2.3). For the term
∑k−1

i=1
˜̄σ−2
i,hϕ(s

h
i , a

h
i )ϕ(s

h
i , a

h
i )

⊤,
according to Appendix D in [Redberg and Wang 2021,], we have that the per-instance l2 sensitivity is
given as

||∆x||2 =
1√
2
supϕ:||ϕ||2≤1||ϕϕ⊤||F ≤

1√
2

Thus, by using a Gaussian mechanism with noise σ2 = 1
4ρ0

, we guarantee that this statistic is
ρ0-zCDP. 2. Now, we need to track 4KH statistics so combing the results of each privatized statistic
advanced composition (Lemma 2.2) to conclude that the DP-LSVI-UCB++ is ρ-zCDP. Thus, by
conversion of zCDP to DP (Lemma 2.1), Algorithm 1 satisfies

(
ρ+ 2

√
ρ log (1/δ), δ

)
-DP. Since

the actions sent to each user depends on a function constructed with DP and their private data only,
by the Billboard Lemma (Lemma 2.4), we conclude Algorithm 1 is (ϵ, δ)-JDP.

Now, we will give a high probability bound of the noises we add for privatization. These will be
useful for the further analysis we do later on.
Lemma A.1 (Utility Analysis). Let

L = 4H

√
dHK

ρ
log

(
10dKH

δ

)
and

λ̃Λ =

√
8dHK

ρ

(
2 +

(
log (5c1H/δ)

c2d

) 2
3

)
for some universal constants c1, c2. Then, with probability atleast 1− δ, for all h, k ∈ [H]× [K], we
have that ||ϕ1||2 ≤ L, ||ϕ2||2 ≤ L, and ||ϕ3||2 ≤ HL. Additionally, we have that K1 is symmetric
and positive definite with ||K1||2 ≤ λ̃Λ.

Proof of Lemma A.1. The bounds on ϕi hold by simple Gaussian concentration and union bound
over all h, k ∈ [H]× [K]. The bound on K1 hold from Lemma 19 in [Redberg and Wang 2021,].

2For those more interested in the details of the GOE DP mechanism, we refer the reader to Appendix D of
[Redberg and Wang 2021,]
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B Upper Confidence Bound Proofs

We provide this lemma from [Jin et al. 2020,] that we will utilize in our analysis.
Lemma B.1 (Lemma D.1 from [He et al. 2023,], Lemma D.4 from [Jin et al. 2020,] for weighted linear
regression). Let {xk}∞k=1 be a real-valued stochastic process on state space S with corresponding
filtration {Fk}∞k=1. Let {ϕk}∞k=1 be an Rd-valued stochastic process, where ϕk ∈ Fk−1 and
∥ϕk∥2 ≤ 1. Let {wk}∞k=1 be a real-valued stochastic process where wk ∈ Fk−1 and 0 ≤ wk ≤ C.
For any k ≥ 0, define Σk = 2λ̃ΛI +

∑k
i=1 w

2
i ϕiϕ

⊤
i +K1. Then with probability at least 1− δ, for

all k ∈ N and all functions V ∈ V with maxs |V (x)| ≤ H , we have∥∥∥∥∥
k∑

i=1

w2
i ϕi {V (xi)− E[V (xi)|Fi−1]}

∥∥∥∥∥
2

Σ−1
k

≤ 4C2H2

[
d

2
log

(
1 +

kC2

λ̃Λ

)
+ log

(
Nε

δ

)]
+
8k2C4ε2

λ̃Λ

,

where Nε is the ε-covering number of the function class V with respect to the distance function
dist(V1, V2) = maxs |V1(s)− V2(s)|.

Proof of Lemma B.1. For any function V ∈ V , there exists some Ṽ in the ε-net such that
dist

(
V, Ṽ

)
≤ ε. Using this, the concentration error can be upper bounded as

∥∥∥∥∥
k∑

i=1

w2
i ϕi {V (xi)− E[V (xi)|Fi−1]}

∥∥∥∥∥
2

Σ−1
k

≤ 2

∥∥∥∥∥
k∑

i=1

w2
i ϕi

{
Ṽ (xi)− E[Ṽ (xi)|Fi−1]

}∥∥∥∥∥
2

Σ−1
k

+ 2

∥∥∥∥∥
k∑

i=1

w2
i ϕi {∆V (xi)− E[∆V (xi)|Fi−1]}

∥∥∥∥∥
2

Σ−1
k

where ∆V = V − Ṽ and the inequality holds from the fact that ∥a+ b∥2Σ ≤ 2 ∥a∥2Σ + 2 ∥b∥2Σ. For

any fixed value function Ṽ , take xi = wiϕi and ηi = wiṼ (xi)− wiE
[
Ṽ (xi)

]
. Notice that

∥xi∥2 ≤ C

E [ηi | Fi] = 0, |ηi| ≤ HC

Then, by Lemma G.6 and taking a union-bound over the ε-net Nε, we get the first term being upper
bounded as

2

∥∥∥∥∥
k∑

i=1

w2
i ϕi

{
Ṽ (xi)− E[Ṽ (xi)|Fi−1]

}∥∥∥∥∥
2

Σ−1
k

≤ 4H2C2

[
d

2
log
(
1 +KC2/λ̃Λ

)
+ log

Nε

δ

]

The second term can be upper bounded as

2

∥∥∥∥∥
k∑

i=1

w2
i ϕi {∆V (xi)− E[∆V (xi)|Fi−1]}

∥∥∥∥∥
2

Σ−1
k

≤ 2k

k∑
i=1

∥∥w2
i ϕi {∆V (xi)− E[∆V (xi)|Fi−1]}

∥∥2
Σ−1

k

≤ 8k2C4ε2/λ̃Λ

where the first inequality holds from Cauchy-Schwartz and the last inequality holds from |∆V | ≤ ε,
w2

i ≤ C2, and Σk ⪰ λ̃Λ. Thus, putting these together, we get the claim.

Now, we are ready to begin to derive our confidence radii. This is a Hoeffding-type upper bound for
the estimation error.
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Lemma B.2. Define E as the event that the following inequalities hold for all s, a, k, h ∈ S ×A×
[K]× [H]: ∣∣∣ p̃w⊤

k,hϕ(s, a)− [Ph
p̃Vk,h+1](s, a)

∣∣∣ ≤ pβ
√

ϕ(s, a)⊤Λ̃−1
k,hϕ(s, a),∣∣∣ ˜̄w⊤

k,hϕ(s, a)− [Ph
p̃V 2
k,h+1](s, a)

∣∣∣ ≤ β̄
√
ϕ(s, a)⊤Λ̃−1

k,hϕ(s, a),∣∣∣ q̃w⊤
k,hϕ(s, a)− [Ph

q̃Vk,h+1](s, a)
∣∣∣ ≤ qβ

√
ϕ(s, a)⊤Λ̃−1

k,hϕ(s, a),

where

pβ = qβ = O

(
HL

√
dλ̃Λ +

√
d3H2 log2

(
HK4L2d

δλ̃Λ

))
,

and

β̄ = O

(
H2L2

√
dλ̃Λ +

√
d3H4 log2

(
HK4L2d

δλ̃Λ

))
.

The event E holds with probability at least 1− 7δ.

Proof of Lemma B.2. For any fixed stage h ∈ [H] and the optimistic private value function p̃Vk,h+1, by

Lemma G.1, there exists a vector wk,h+1 such that Ph
p̃Vk,h+1(s, a) can be represented as w⊤

k,hϕ(s, a)

with ∥wk,h∥2 ≤ H
√
d. Then, we can decompose the estimation error

∥∥∥ p̃wk,h − wk,h

∥∥∥
Λ̃h,k

as

∥∥∥∥∥Λ̃−1
k,h

[
k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)
p̃Vk,h+1(s

i
h+1) + ϕ1

]
− Λ̃−1

k,h

[
2λ̃ΛId +

k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)
ϕ
(
sih, a

i
h

)⊤
+K1

]
wk,h

∥∥∥∥∥
Λ̃h,k

=

∥∥∥∥∥Λ̃−1
k,h

k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

) (
p̃Vk,h+1(s

i
h+1)− Ph

p̃Vk,h+1(s
i
h, a

i
h)
)
+ Λ̃−1

k,hϕ1 + Λ̃−1
k,hK1wk,h − 2λ̃ΛΛ̃

−1
k,hwk,h

∥∥∥∥∥
Λ̃h,k

≤
∥∥∥Λ̃−1

k,hϕ1

∥∥∥
Λ̃h,k

+
∥∥∥Λ̃−1

k,hwk,hK1

∥∥∥
Λ̃h,k

+
∥∥∥2λ̃ΛΛ̃

−1
k,hwk,h

∥∥∥
Λ̃h,k

+∥∥∥∥∥Λ̃−1
k,h

k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

) (
p̃Vk,h+1(s

i
h+1)− Ph

p̃Vk,h+1(s
i
h, a

i
h)
)∥∥∥∥∥

Λ̃h,k

where the first inequality holds from ∥a+ b∥Σ ≤ ∥a∥Σ + ∥b∥Σ. For the first term, we know that by
construction, Λ̃−1

k,h ⪯ 1/λ̃Λ. Additionally, by utility (Lemma A.1), we have that ∥ϕ1∥2 ≤ L. Putting
these together, we get ∥∥∥Λ̃−1

k,hϕ1

∥∥∥
Λ̃h,k

≤ L

√
1

λ̃Λ

≤ HL

√
dλ̃Λ

For the second term, we have that ∥wk,h∥2 ≤ H
√
d. Again, by utility, we have that ∥K1∥2 ≤ λ̃Λ.

Thus, we get ∥∥∥Λ̃−1
k,hwk,hK1

∥∥∥
Λ̃h,k

≤ H

√
dλ̃Λ ≤ HL

√
dλ̃Λ

For the third term, using the facts we have described above, we get∥∥∥2λ̃ΛΛ̃
−1
k,hwk,h

∥∥∥
Λ̃h,k

≤ 2H

√
dλ̃Λ ≤ 2HL

√
dλ̃Λ

Lastly, for the last term, we apply Lemma B.1 with the following optimistic value function class pVh
and ε = H

√
dλ̃Λ/K, then for any fixed h ∈ [H], with probability atleast 1− δ/H , for all episodes
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k ∈ [K], we have∥∥∥∥∥Λ̃−1
k,h

k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

) (
p̃Vk,h+1(s

i
h+1)− Ph

p̃Vk,h+1(s
i
h, a

i
h)
)∥∥∥∥∥

Λ̃h,k

≤

√
4C2H2

[
d

2
log

(
1 +

kC2

λ̃Λ

)
+ log

(
HNε

δ

)]
+

8k2C4ε2

λ̃Λ

≤

√
4H

[
d

2
log

(
1 +

k

λ̃ΛH

)
+ log

(
HNε

δ

)]
+

8k2ε2

λ̃ΛH2

≤

√
4H

[
d

2
log

(
1 +

k

λ̃ΛH

)
+ log

(
HNε

δ

)]
+ 8

= O

(√
d3H2 log2

(
HK4L2d

δλ̃Λ

))

where the first inequality holds due to Lemma B.1, the second inequality holds since ˜̄σ−2
i,h ≤ 1/

√
H ,

and the last inequality holds due to Lemma F.2 and ε = H
√
dλ̃Λ/K. Putting everything together,

we get ∥∥∥ p̃wk,h − wk,h

∥∥∥
Λ̃h,k

≤ O

(
HL

√
dλ̃Λ +

√
d3H2 log2

(
HK4L2d

δλ̃Λ

))
= pβ

Thus, using this, we can say∣∣∣ p̃w⊤
k,hϕ(s, a)− [Ph

p̃Vk,h+1](s, a)
∣∣∣ = ∣∣∣ p̃w⊤

k,hϕ(s, a)− w⊤
k,hϕ(s, a)

∣∣∣
≤
∥∥∥ p̃wk,h − wk,h

∥∥∥
Λ̃h,k

∥ϕ(s, a)∥Λ̃h,k

≤ pβ
√
ϕ(s, a)⊤Λ̃−1

k,hϕ(s, a)

where the first inequality holds due to Cauchy-Schwartz inequality. Replacing the value function
class by the pessimistic value function class qV or the squared value function class pV2 and using the
same exact proof as above, we can derive the other upper estimation errors∣∣∣ ˜̄w⊤

k,hϕ(s, a)− [Ph
p̃V 2
k,h+1](s, a)

∣∣∣ ≤ β̄
√

ϕ(s, a)⊤Λ̃−1
k,hϕ(s, a),∣∣∣ q̃w⊤

k,hϕ(s, a)− [Ph
q̃Vk,h+1](s, a)

∣∣∣ ≤ qβ
√
ϕ(s, a)⊤Λ̃−1

k,hϕ(s, a),

where

qβ = O

(
HL

√
dλ̃Λ +

√
d3H2 log2

(
HK4L2d

δλ̃Λ

))
,

and

β̄ = O

(
H2L2

√
dλ̃Λ +

√
d3H4 log2

(
HK4L2d

δλ̃Λ

))
.

Now, we provide a bound on the variance estimator.

Lemma B.3. Let Ẽh be the event such that for all episodes k ∈ [K], stages h ≤ h′ ≤ H , and
state-action pairs (s, a) ∈ S ×A, the weight vector pwk,h satisfies∣∣∣ p̃w⊤

k,h′ϕ(s, a)− [Ph
p̃Vk,h′+1](s, a)

∣∣∣ ≤ β
√

ϕ(s, a)⊤Λ̃−1
k,h′ϕ(s, a) (B.1)
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where

β = O

(
HL

√
dλ̃Λ +

√
d log2

(
1 +

(
HK4L2d

δλ̃Λ

)))
.

On the event E and Ẽh+1, for each episode k ∈ [K] and stage h, the estimated variance satisfies:∣∣∣[Vh
p̃Vk,h+1](s

h
k , a

h
k)− [Vh

p̃Vk,h+1](s
h
k , a

h
k)
∣∣∣ ≤ Ek,h,

and ∣∣∣[Vh
p̃Vk,h+1](s

k
h, a

k
h)− [VhV

∗
h ](s

k
h, a

k
h)
∣∣∣ ≤ Ek,h +Dk,h.

where

Ek,h = min
{
βk

∥∥∥Λ̃−1/2
k,h ϕ(skh, a

k
h)
∥∥∥
2
, H2

}
+min

{
2H pβk

∥∥∥Λ̃−1/2
k,h ϕ(skh, a

k
h)
∥∥∥
2
, H2

}
and

Dk,h = min

{
4d3H2

(
p̃w⊤
k,hϕ(s, a)− q̃w⊤

k,hϕ(s, a) + 2pβk

√
ϕ(s, a)⊤Λ̃−1

k,hϕ(s, a)

)
, d3H3

}
Proof of Lemma B.3. We will first use Lemma B.2∣∣∣[Vh

p̃Vk,h+1](s
h
k , a

h
k)− [Vh

p̃Vk,h+1](s
h
k , a

h
k)
∣∣∣

=

∣∣∣∣[w̃k,hϕ(s
k
h, a

k
h)][0,H2] − [ p̃wk,hϕ(s

k
h, a

k
h)]

2
[0,H] − [Ph

p̃Vk,h+1]
2](skh, a

k
h)−

(
[Ph

p̃Vk,h+1]](s
k
h, a

k
h)
)2∣∣∣∣

≤
∣∣∣[w̃k,hϕ(s

k
h, a

k
h)][0,H2] − [Ph

p̃Vk,h+1]
2](skh, a

k
h)
∣∣∣+ ∣∣∣∣[ p̃wk,hϕ(s

k
h, a

k
h)]

2
[0,H] −

(
[Ph

p̃Vk,h+1]k,h+1](s
k
h, a

k
h)
)2∣∣∣∣

=
∣∣∣[w̃k,hϕ(s

k
h, a

k
h)][0,H2] − [Ph

p̃Vk,h+1]
2
k,h+1](s

k
h, a

k
h)
∣∣∣

+
∣∣∣[ p̃wk,hϕ(s

k
h, a

k
h)][0,H] + [Ph

p̃Vk,h+1]k,h+1](s
k
h, a

k
h)
∣∣∣ ∣∣∣[ p̃wk,hϕ(s

k
h, a

k
h)][0,H] − [Ph

p̃Vk,h+1]k,h+1](s
k
h, a

k
h)
∣∣∣

≤ min
{
βk

∥∥∥Λ̃−1/2
k,h ϕ(skh, a

k
h)
∥∥∥
2
, H2

}
+min

{
2H pβk

∥∥∥Λ̃−1/2
k,h ϕ(skh, a

k
h)
∥∥∥
2
, H2

}
= Ek,h

where the first inequality holds from the triangle inequality and the second inequality holds from
conditioning on E and the fact that 0 ≤ [ p̃wk,hϕskh,s

k
h
][0,H] + [PhVk,h+1](s

k
h, a

k
h) ≤ 2H . Now,∣∣∣[Vh

p̃Vk,h+1](s
k
h, a

k
h)− [VhV

∗
h ](s

k
h, a

k
h)
∣∣∣

=

∣∣∣∣[Ph
p̃V 2
k,h+1](s

k
h, a

k
h)−

(
[Ph

p̃Vk,h+1](s
k
h, a

k
h)
)2
− [PhV

∗2
h+1](s

k
h, a

k
h) +

(
[PhV

∗
h+1](s

k
h, a

k
h)
)2∣∣∣∣

≤
∣∣∣[Ph

(
p̃Vk,h+1 − V ∗

h+1

)(
p̃Vk,h+1 + V ∗

h+1

)
](skh, a

k
h)
∣∣∣

+
∣∣∣([Ph

p̃Vh+1](s
k
h, a

k
h)− [PhV

∗
h+1](s

k
h, a

k
h)
)(

[Ph
p̃Vk,h+1](s

k
h, a

k
h) + [PhV

∗
h+1](s

k
h, a

k
h)
)∣∣∣

≤ 4H
(
[Ph

p̃Vk,h+1](s
k
h, a

k
h)− [PhV

∗
h+1](s

k
h, a

k
h)
)

where the first inequality holds from triangle inequality and the second inequality holds due to
Lemma B.5 and the fact that 0 ≤ V ∗

h+1(s
′ ≤ Vk,h+1(s

′) ≤ H . Now, if we condition on E and Ẽ , we
get (

[Ph
p̃Vk,h+1](s

k
h, a

k
h)− [PhV

∗
h+1](s

k
h, a

k
h)
)

≤
(
[Ph

p̃Vk,h+1](s
k
h, a

k
h)− [Ph

qVk,h+1](s
k
h, a

k
h)
)

≤ p̃w⊤
k,hϕ(s, a) +

pβ
√
ϕ(s, a)⊤Λ̃−1

k,hϕ(s, a)− q̃w⊤
k,hϕ(s, a) +

qβ
√
ϕ(s, a)⊤Λ̃−1

k,hϕ(s, a)
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where the first inequality holds due to Lemma B.5 and the last inequality holds by Lemma B.2.
Combining results, we get∣∣∣[Vh

p̃Vk,h+1](s
k
h, a

k
h)− [VhV

∗
h+1]

∣∣∣
≤
∣∣∣[Vh

p̃Vk,h+1](s
k
h, a

k
h)− [Vh

p̃V ∗
k,h+1](s

k
h, a

k
h)
∣∣∣+ ∣∣∣[Vh

p̃Vk,h+1](s
k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)
∣∣∣

≤ Ek,h +min

{
4H

(
p̃w⊤
k,hϕ(s, a) +

pβ
√

ϕ(s, a)⊤Λ̃−1
k,hϕ(s, a)− q̃w⊤

k,hϕ(s, a) +
qβ
√
ϕ(s, a)⊤Λ̃−1

k,hϕ(s, a)

)
, H2

}

We also have another upper bound on the variance estimator.

Lemma B.4. On the event E and Ẽh+1, for any episode k and i > k, we have

[Vh( p̃Vi,h+1 − V ∗
h+1)](s

k
h, a

k
h) ≤ Dk,h/d

3H.

Proof of Lemma B.4. On the event E and Ẽh+1, we have

[Vh( p̃Vi,h+1 − V∗
h+1)](s

k
h, a

k
h) ≤ [Ph( p̃Vi,h+1 − V ∗

h+1)
2](skh, a

k
h)

≤ 2H[Ph( p̃Vi,h+1 − V ∗
h+1)](s

k
h, a

k
h)

≤ 2H
(
[Ph( p̃Vi,h+1](s

k
h, a

k
h)− [Ph( q̃Vi,h+1](s

k
h, a

k
h)
)

≤ 2H
(
[Ph( p̃Vk,h+1](s

k
h, a

k
h)− [Ph( q̃Vi,h+1](s

k
h, a

k
h)
)

≤ 2H

(
p̃w⊤
k,hϕ(s, a) +

pβ
√

ϕ(s, a)⊤Λ̃−1
k,hϕ(s, a)− q̃w⊤

k,hϕ(s, a) +
qβ
√
ϕ(s, a)⊤Λ̃−1

k,hϕ(s, a)

)
where the first inequality holds due to Var(x) ≤ E[x2], the second and third inequalities hold due

to Lemma B.5 with the fact that 0 ≤ p̃Vi,h+1(s
′), V ∗

h+1(s
′) ≤ H , the fourth inequality holds because

Vk,h+1 ≥ Vi,h+1 from the update rule in Algorithm 1, and the fifth inequality holds due to Lemma B.2.

On the other hand, since the value functions satisfy 0 ≤ p̃Vi,h+1(s
′), V ∗

h+1(s
′) ≤ H , we have

[Vh(Vi,h+1 − V ∗
h+1)](s

k
h, a

k
h) ≤

d3H3

d3H
= H2.

Here, we prove the optimism and pessimism of our privatized value function which we will use for
the regret analysis.

Lemma B.5 (Privatized Optimism and Pessimism). On the event E and Ẽh, for all episodes k ∈ [K]
and stages h ≤ h′ ≤ H , we have

p̃Qk,h(s, a) ≥ Q∗
h(s, a) ≥ q̃Qk,h(s, a).

In addition, we have
p̃Vk,h(s) ≥ V ∗

h (s) ≥ q̃Vk,h(s).

Proof of Lemma B.5. As we would usually do, we will prove optimism and pessimism using induc-
tion. First, consider the base case H + 1. For all states s ∈ S and actions a ∈ A, we have

p̃Qk,H+1(s, a) = Q∗
h(s, a) =

q̃Qk,h(s, a) = 0 and p̃Vk,h(s) ≥ V ∗
h (s) ≥ q̃Vk,h(s) = 0.

Thus, we have shown the base case. Now, consider stage h+ 1. Since the event Ẽh directly implies
the event Ẽh+1, according to the induction hypothesis, we have

16



p̃Vk,h+1(s) ≥ V ∗
h+1(s) ≥ q̃Vk,h+1(s).

Thus, for all episodes k ∈ [K], we have

rh(s, a) + p̃w⊤
k ϕ(s, a) +

pβ
√
ϕ(s, a)⊤Λ̃−1

k,hϕ(s, a)−Q∗
h(s, a) ≥ [Ph( p̃Vk,h+1 − V ∗

h+1)](s, a) ≥ 0,

where the first inequality holds by conditioning on event Ẽh. Additionally, we have

Q∗
h(s, a) ≤ min

{
min

1≤i≤k

(
rh(s, a) + p̃w⊤

i ϕ(s, a) +
pβ
√
ϕ(s, a)⊤Λ̃−1

i,hϕ(s, a)
)
, H

}
≤ p̃Qk,h(s, a).

With a similar argument, for the pessimistic action-value function q̃Qk,h(s, a), we have

rh(s, a) + q̃w⊤
k ϕ(s, a)− qβ

√
ϕ(s, a)⊤Λ̃−1

k,hϕ(s, a)−Q∗
h(s, a) ≤ [Ph( q̃Vk,h+1 − V ∗

h+1)](s, a) ≤ 0.

Since the optimal value function is lower bounded by Q∗
h(s, a) ≥ 0, the result further implies that

Q∗
h(s, a) ≥ max

{
max
1≤i≤k

(
rh(s, a) + q̃w⊤

last,hϕ(s, a) +
qβ
√
ϕ(s, a)⊤Λ̃−1

last,hϕ(s, a)
)
, 0

}
≥ q̃Qk,h(s, a).

In addition, we have

p̃Vk,h(s) = max
a

p̃Qi,h(s, a) ≥ min
1≤i≤k

max
a

Q∗
h(s, a) = V ∗

h (s),

q̃Vk,h(s) = max
a

p̃Qi,h(s, a) ≤ max
1≤i≤k

max
a

Q∗
h(s, a) = V ∗

h (s),

Now, we will also provide a Bernstein-type upper bound on the estimation error using what have
proven so far. This is much sharper than Lemma B.2.

Lemma B.6. Define Ẽ = Ẽ1 as the event such that B.1 holds for all stages h ∈ [H]. On the events E ,
event Ẽ holds with probability at least 1− δ

Proof. For any fixed stage h ∈ [H] and the optimistic private value function p̃Vk,h+1, by Lemma G.1,

there exists a vector wk,h+1 such that Ph
p̃Vk,h+1(s, a) can be represented as w⊤

k,hϕ(s, a) with

∥wk,h∥2 ≤ H
√
d. Then, we can decompose the estimation error

∥∥∥ p̃wk,h − wk,h

∥∥∥
Λ̃h,k

as

∥∥∥∥∥Λ̃−1
k,h

[
k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)
p̃Vk,h+1(s

i
h+1) + ϕ1

]
− Λ̃−1

k,h

[
2λ̃ΛId +

k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)
ϕ
(
sih, a

i
h

)⊤
+K1

]
wk,h

∥∥∥∥∥
Λ̃h,k

=

∥∥∥∥∥Λ̃−1
k,h

k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

) (
p̃Vk,h+1(s

i
h+1)− Ph

p̃Vk,h+1(s
i
h, a

i
h)
)
+ Λ̃−1

k,hϕ1 + Λ̃−1
h,kwk,hK1 − 2λ̃ΛΛ̃

−1
k,hwk,h

∥∥∥∥∥
Λ̃h,k

≤
∥∥∥Λ̃−1

k,hϕ1

∥∥∥
Λ̃h,k

+
∥∥∥Λ̃−1

h,kwk,hK1

∥∥∥
Λ̃h,k

+
∥∥∥2λ̃ΛΛ̃

−1
k,hwk,h

∥∥∥
Λ̃h,k

+∥∥∥∥∥Λ̃−1
k,h

k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

) (
p̃Vk,h+1(s

i
h+1)− Ph

p̃Vk,h+1(s
i
h, a

i
h)
)∥∥∥∥∥

Λ̃h,k
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where the first inequality holds from ∥a+ b∥Σ ≤ ∥a∥Σ + ∥b∥Σ. For the first term, we know that by
construction, Λ̃−1

k,h ⪯ 1/λ̃Λ. Additionally, by utility (Lemma A.1), we have that ∥ϕ1∥2 ≤ L. Putting
these together, we get ∥∥∥Λ̃−1

k,hϕ1

∥∥∥
Λ̃h,k

≤ L

√
1

λ̃Λ

≤ HL

√
dλ̃Λ

For the second term, we have that ∥wk,h∥2 ≤ H
√
d. Again, by utility, we have that ∥K1∥2 ≤ λ̃Λ.

Thus, we get ∥∥∥Λ̃−1
h,kwk,hK1

∥∥∥
Λ̃h,k

≤ H

√
dλ̃Λ ≤ HL

√
dλ̃Λ

For the third term, using the facts we have described above, we get∥∥∥2λ̃ΛΛ̃
−1
k,hwk,h

∥∥∥
Λ̃h,k

≤ 2H

√
dλ̃Λ ≤ 2HL

√
dλ̃Λ

For the last term,

∥∥∥∥∥Λ̃−1
k,h

k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

) (
p̃Vk,h+1(s

i
h+1)− Ph

p̃Vk,h+1(s
i
h, a

i
h)
)∥∥∥∥∥

Λ̃h,k

=

∥∥∥∥∥
k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

) (
p̃Vk,h+1(s

i
h+1)− Ph

p̃Vk,h+1(s
i
h, a

i
h)
)∥∥∥∥∥

Λ̃−1
h,k

≤

∥∥∥∥∥
k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

) (
V ∗
h+1(s

i
h+1)− PhV

∗
h+1(s

i
h, a

i
h)
)∥∥∥∥∥

Λ̃−1
h,k

+

∥∥∥∥∥
k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

) (
∆ p̃Vk,h+1(s

i
h+1)− Ph∆ p̃Vk,h+1(s

i
h, a

i
h)
)∥∥∥∥∥

Λ̃−1
h,k

where we define ∆ p̃Vk,h+1 = p̃Vk,h+1 − V ∗
h+1. For the first term, we use the result from Zhou and Gu

(Lemma G.8) where

xi = σ̃
−1
i,hϕ(s

i
h, a

i
h)

and

ηi = 1

{
[VhV

∗
h+1](s

i
h, a

i
h) ≤ σ̃

2
i,h

}(
σ̃
−1
i,h(V

∗
h+1(s

i
h+1)− [PhV

∗
h+1](s

i
h, a

i
h))
)

Then, we have the following:

∥xi∥2 =
∥∥∥σ̃−1

i,hϕ(s
i
h, a

i
h)
∥∥∥
2
≤ ∥ϕ(s

i
h, a

i
h)∥2√

H
≤ 1√

H
,

E[ηi|Fi] = 0, |ηt| ≤
∣∣∣(σ̃−1

i,h(V
∗
h+1(s

i
h+1)− [PhV

∗
h+1](s

i
h, a

i
h))
)∣∣∣ ≤ √H,

E[η2i |Fi] = E
[
1

{
[VhV

∗
h+1](s

i
h, a

i
h) ≤ σ̃

2
i,h

}
· σ̃−2

i,h [VhV
∗
h+1](s

i
h, a

i
h)
]
≤ 1,

max
i

{
|ηi| ·min{1, ∥xi∥Λ̃−1

i,h
}
}
≤ 2Hσ̃

−1
i,h∥xi∥Λ̃−1

i,h
≤
√
d.

Thus, with probability at least 1− δ/H , for all k ∈ [K], we have∥∥∥∥∥
k−1∑
i=1

xiηi

∥∥∥∥∥
Λ̃−1

k,h

≤ O

(√
d log2

(
1 +

(
HK4L2d

δλ̃Λ

)))
.
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In addition, on the event Ẽh+1 and E , according to Lemma B.2, we have

σ̃
2
k,h ≥ [Vk,h

p̃Vk,h+1](s
k
h, a

k
h) + Ek,h +Dk,h ≥ [VhV

∗
h+1](s

k
h, a

k
h),

which further implies that∥∥∥∥∥
k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

) (
V ∗
h+1(s

i
h+1)− PhV

∗
h+1(s

i
h, a

i
h)
)∥∥∥∥∥

Λ̃−1
h,k

=

∥∥∥∥∥
k−1∑
i=1

xiηi

∥∥∥∥∥
Λ̃−1

k,h

≤ O

(√
d log2

(
1 +

(
HK4L2d

δλ̃Λ

)))
.

For the second term, we cannot directly use Lemma G.8 since the stochastic noise

∆ p̃Vk,h+1(s
i
h+1)− [Ph(∆ p̃Vk,h+1)](s

i
h, a

i
h)

is not Fi+1 measurable. Thus, we need to use the ε-net covering argument. For each episode i, the
value function Vi,h belongs to the optimistic value function class V . If we set ε =

√
λ̃Λ/(4H

2d2K),
then according to Lemma F.2, the covering entropy for the function class V − V ∗

h+1 is upper bounded
by

logNε ≤ O(d3H2 log2(HK4L2d/λ̃Λ)).

Then for function p̃Vk,h, there must exist a function Ṽ in the ε-net, such that

dist(∆ p̃Vk,h, Ṽ ) ≤ ε.

Therefore, the variance of function Ṽ is upper bounded by

[VhṼ ](sih, a
i
h)− [Vh(∆ p̃Vk,h+1)](s

i
h, a

i
h) = [PhṼ

2](sih, a
i
h)− [Ph(∆ p̃Vk,h+1)

2](sih, a
i
h)

+ ([Ph(∆ p̃Vk,h+1)](s
i
h, a

i
h))

2 − (PhṼ (sih, a
i
h))

2

≤ 2 dist(∆ p̃Vk,h, Ṽ ) ·max
s′
|∆ p̃Vk,h+1 + Ṽ |(s′)

≤ 4H · dist(∆ p̃Vk,h, Ṽ )

≤ 1

d2

where the first inequality holds due to the definition of distance between different functions, the
third inequality holds since |∆Vk,h+1(s

′) + Ṽ (s′)| ≤ 2H , and the last inequality holds due to the
definition of ε-net. Again, we make use of Lemma G.8 with the following:

xi = σ̃
−1
i,hϕ(s

i
h, a

i
h)

and

ηi = 1{[VhṼ ](sih, a
i
h) ≤ σ̃

2
i /(d

3H)} · σ̃−1
i (Ṽ (sih+1)− [PhṼ ](sih, a

i
h)).

Therefore, for xt, ηt, we have the following property:

∥xi∥2 = ∥σ̃−1
i,hϕ(s

i
h, a

i
h)∥2 ≤ ∥ϕ(sih, aih)∥2/

√
H ≤ 1/

√
H,

E[ηi | Fi] = 0, |ηt| ≤
∣∣∣σ̃−1

i (V ∗
h (s

i
h+1)− [PhṼh+1](s

i
h, a

i
h))
∣∣∣ ≤ √H,

E[η2i | Fi] = E
[
1{[VhṼ ](sih, a

i
h) ≤ σ̃

2
i /(d

3H)} · σ̃−2
i [VhṼ ](sih, a

i
h)
]
≤ 1

d3H
,

max
i

{
|ηi| ·min{1, ∥xi∥Σ−1

i,h
}
}
≤ 2Hσ̃

−1
i ∥xi∥Λ̃−1

i,h
≤ 1

d3H
.

After taking a union bound over the ε-net, with probability at least 1− δ, we have∥∥∥∥∥
k−1∑
i=1

xiηi

∥∥∥∥∥
Λ̃−1

k,h

≤ O

(√
d log2

(
1 +

(
HK4L2d

δλ̃Λ

)))
.
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In addition, on the event Ẽh+1 and E, according to Lemmas B.2 and B.3, we have

σ̃
2
i,h ≥ [Vi,h

p̃Vi,h+1](s
k
h, a

k
h)+Ei,h+Di,h+H ≥ Di,h+H ≥ d3H[Vh(∆ p̃Vk,h+1)](s

i
h, a

i
h)+H ≥ d3H[VhṼ ](sih, a

i
h).

Denote V̄ = ∆ p̃Vk,h+1 − Ṽ . Then,∥∥∥∥∥
k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

) (
∆ p̃Vk,h+1(s

i
h+1)− Ph∆ p̃Vk,h+1(s

i
h, a

i
h)
)∥∥∥∥∥

Λ̃−1
h,k

≤ 2

∥∥∥∥∥
k−1∑
i=1

σ̃
−2
i ϕ(sih, a

i
h)(Ṽ (sih+1)− [PhṼ ](sih, a

i
h))

∥∥∥∥∥
Λ̃−1

k,h

+ 2

∥∥∥∥∥
k−1∑
i=1

σ̃
−2
i ϕ(sih, a

i
h)(V̄ (sih+1)− [PhV̄ ](sih, a

i
h))

∥∥∥∥∥
Λ̃−1

k,h

≤ 2

∥∥∥∥∥
k−1∑
i=1

xiηi

∥∥∥∥∥
Λ̃−1

k,h

+
8ε2k2

λ

≤ O

(√
d log2

(
1 +

(
HK4L2d

δλ̃Λ

)))
.

where the first inequality holds from ∥a+ b∥Σ ≤ 2 ∥a∥Σ + 2 ∥b∥Σ, the second inequality holds
from |V (s′)| ≤ ε, ∥ϕ(s, a)∥2 ≤ 1, and Λ̃k,h ⪰ λ̃Λ, Λ̃−1

k,h ⪯ 1 and the last inequality holds with

ε =
√

λ̃Λ/(4H
2d2K). Combining these results, we get∣∣∣ p̃w⊤

k,h′ϕ(s, a)− [Ph
p̃Vk,h′+1](s, a)

∣∣∣ ≤ β
√

ϕ(s, a)⊤Λ̃−1
k,h′ϕ(s, a)

where

β = O

(
HL

√
dλ̃Λ +

√
d log2

(
1 +

(
HK4L2d

δλ̃Λ

)))

C Estimated Variance and Regret Bound Proofs

We simply state some results derived by [He et al. 2023,]. Our results are largely the same except for
factors like ι and unlike [He et al. 2023,], we must retain these terms since λ̃Λ has an upper-bound
that is induced from noise added to the privatized estimators and is not a regular constant like λ in
regular ridge-regression
Lemma C.1 (Lemma 4.4 From [Zhou and Gu 2022,]). For any parameters β′ ≥ 1 and C ≥ 1, the
summation of bonuses is upper bounded by

K∑
k=1

min

(
β′
√
ϕ(shk , a

h
k)

⊤Λ̃−1
k,hϕ(s

h
k , a

h
k), C

)
≤ 4d4H6Cι+10β′d5H4ι+2β′

√√√√2dι

K∑
k=1

(σ̃2
k,h +H),

where ι = log
(
1 + K

dλ̃Λ

)
.

Lemma C.2 (Lemma C.1 From [He et al. 2023,]). Define E1 as the following event

E1 =
{
∀h ∈ [H],

K∑
k=1

H∑
h′=h

[
Ph

(
pVk,h+1 − pV pπk

k,h+1

)]
(skh, a

k
h)

−
K∑

k=1

H∑
h′=h

(
pVk,h+1(s

k
h+1)− pV pπk

k,h+1(s
k
h+1)

)
≤ 2
√
2H3K log (H/δ)

}
.
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Then, Pr (E1) ≥ 1− δ. Furthermore, on the events Ẽ , E , and E1, for all stages h ∈ [H], the regret in
the first K episodes is upper bounded by:

K∑
k=1

(
p̃Vk,h(s

k
h)− p̃V π̃k

k,h(s
k
h)
)
≤ 16d4H8ι+40βd7H5ι+8β

√
2dHι

H∑
h=1

K∑
k=1

(σ̃2
k,h+H)+4

√
H3K log(H/δ),

and for all stages h ∈ [H], we further have:
K∑

k=1

H∑
h=1

Ph

(
p̃Vk,h(s

k
h)− p̃V π̃k

k,h(s
k
h)
)
(skh, a

k
h) ≤ 16d4H9ι+ 40βd7H6ι+ 8Hβ

√
2dHι

H∑
h=1

K∑
k=1

(σ̃2
k,h +H)

+ 4
√
H5K log(H/δ),

where ι = log
(
1 + K

dλ̃Λ

)
.

Lemma C.3. Lemma C.2 From [He et al. 2023,] Define E2 as the following event

E2 =
{
∀h ∈ [H],

K∑
k=1

H∑
h′=h

[
Ph

(
pVk,h+1 − qVk,h+1

)]
(skh, a

k
h)

−
K∑

k=1

H∑
h′=h

(
pVk,h+1(s

k
h+1)− qVk,h+1(s

k
h+1)

)
≤ 2
√
2H3K log (H/δ)

}
.

Then, Pr (E2) ≥ 1 − δ. On the events Ẽ , E , and E2, the difference between the optimistic value

function p̃Vk,h and the pessimistic value function q̃Vk,h is upper bounded by:
K∑

k=1

H∑
h=1

Ph

(
p̃Vk,h(s

k
h)− q̃Vk,h+1

)
(skh, a

k
h) ≤ 32d4H9ι+ 40(β + pβ)d7H6ι+ 8H(β + pβ)

√
2dHι

H∑
h=1

K∑
k=1

(σ̃2
k,h +H)

+ 4
√
H5K log(H/δ),

where ι = log
(
1 + K

dλ̃Λ

)
.

Lemma C.4 (Lemma C.3 From [He et al. 2023,]). On the event E ∩ Ẽ ∩ E1 ∩ E2 ∩ E3, the total
estimated variance is upper bounded by:

K∑
k=1

H∑
h=1

σ̃2
k,h ≤ O

(
H2K +H4.5d3K0.5L2 log1.5

(
HK4L2d

δλ̃Λ

))
.

Lemma C.5. For any linear MDPM, if we set the confidence radii pβ, qβ, β as follows:

pβ = qβ = O

(
HL

√
dλ̃Λ +

√
d3H2 log2

(
HK4L2d

δλ̃Λ

))
,

β̄ = O

(
H2L2

√
dλ̃Λ +

√
d3H4 log2

(
HK4L2d

δλ̃Λ

))
.

β = O

(
HL

√
dλ̃Λ +

√
d log2

(
1 +

(
HK4L2d

δλ̃Λ

)))
then with high probability of at least 1 − 7δ, the regret of DP-LSVI-UCB++ is upper bounded as
follows:

Regret(K) ≤ Õ

(
d
√
H3K +

H18/4d7/6K1/2 log(10dKH/δ)

ϵ

)
In addition, the number of updates for p̃Qk,h and q̃Qk,h is upper bounded by O(dH log(1 +K/dλ̃Λ)).
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Proof of Lemma C.5. On the event E ∩ Ẽ ∩ E1 ∩ E2 ∩ E3, the regret is upper bounded by:

Regret(K) =

K∑
k=1

(
V ∗
1 (s

k
1)− p̃V πk

k,1(s
k
1)
)

≤
K∑

k=1

(
p̃Vk,1(s

k
1)− p̃V pπk

k,1 (s
k
1)
)

≤ 16d4H8ι+ 40βd7H5ι+ 8β

√√√√2dHι

H∑
h=1

K∑
k=1

(σ̃2
k,h +H) + 4

√
H3K log(H/δ)

≤ Õ

(
d
√
H3K +

H18/4d7/6K1/2 log(10dKH/δ)

ϵ

)
where ι = log(1 + K/(dλ̃Λ)). The first inequality holds due to optimism (Lemma B.5), the
second inequality holds due to Lemma C.3, and the last inequality holds due to the variance bound
(Lemma C.4). Since the event E ∩ Ẽ ∩ E1 ∩ E2 ∩ E3 holds with probability at least 1− 7δ holds. In

addition, according to Lemma D.2, the number of updates for p̃Qk,h and q̃Qk,h is upper bounded by
O(dH log(1 +K/λ̃Λ)).

D Switching Cost Proof

We first prove a standard determinant upper bound for our privatized Gram matrix Λ̃. This will be
useful for determining the switching cost
Lemma D.1 (Privatized Determinant Upper Bound (Similar to Lemma C.1 in [Wang et al. 2021,]).
Let
{
Λ̃h,k, (h, k) ∈ [H]× [K]

}
be defined as in Algorithm 1. Then, for all h ∈ [H], k ∈ [K], we

have that det
(
Λ̃h,k

)
≤ (λ̃Λ + (k − 1)/d)d.

Proof of Lemma D.1. We have that

Tr
(
Λ̃h,k

)
= Tr(K1) +

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)ϕ(s

i
h, a

i
h)

⊤

≤ dλ̃Λ +
k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)ϕ(s

i
h, a

i
h)

⊤

≤ dλ̃Λ +

k−1∑
i=1

||ϕ(sih, aih)||2

≤ dλ̃Λ + k − 1

where the first inequality holds from the fact that for a symmetric matrix A, we have the inequality
Tr (A) ≤ n||A||2 and that from the utility analysis (Lemma A.1), ||K1||2 ≤ λ̃Λ. The second
inequality holds from the fact that σ̄−2

i,h ≤ 1, and the last inequality holds from the assumption that
||ϕ(sih, aih)||2 ≤ 1. Now, since we have that Λ̃h,k is positive semi-definite, by the AM-GM inequality,
we have

det
(
Λ̃h,k

)
≤

Tr
(
Λ̃h,k

)
d

d

≤
(
λ̃Λ +

k − 1

d

)d

We can finally prove the switching cost of Algorithm 1.
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Lemma D.2. Conditioned on the event that ||K1||2 ≤ λ̃Λ for all h, k ∈ [H]× [K], DP-LSVI-UCB++

(Algorithm 1) has a global switching cost of atmost O
(
dH log(1 +K/dλ̃Λ)

)
.

Proof. We denote k0 = 0 and suppose that {k1, . . . , km} be the episodes where our algorithm
updates the value function. Then, according to the determinant-based criterion (Line 10), for each
episode ki, there exists an h ∈ [H] such that det(Λ̃k,h) ≥ 2 det(Λ̃ki−1,h). Then, due to the utility
analysis (Lemma A.1), for h′ ̸= h, we have Λ̃ki,h′ ⪰ Λ̃ki−1,h′ . Thus,

H∏
h=1

det(Λ̃k,h) ≥ 2

H∏
h=1

det(Λ̃ki−1,h)

Applying this across all episodes, we get
H∏

h=1

det(Λ̃k,h) ≥ 2m
H∏

h=1

det(Λ̃k0,h) = 2m
H∏

h=1

det(2λ̃ΛI) = 2mλ̃dH
Λ

Furthermore, from Lemma D.1
H∏

h=1

det(Λ̃k,h) ≤
(
λ̃Λ +

K

d

)dH

Combining these two inequalities, we conclude with

m ≤ O
(
dH log

(
1 +K/dλ̃Λ

))

E Weight Norm Proofs

We prove upper bounds on the optimistic, pessimistic, and squared weight vectors. These will be
used in uniform covering arguments which are used in our regret analysis.

Lemma E.1. For all stages h ∈ [H] and all episodes n ∈ N, the norm of the weight vector p̃wk,h can
be upper bounded as ∥∥∥ p̃wk,h

∥∥∥
2
≤ HKL

√
2d

λ̃Λ

Proof of Lemma E.1. First, recall that by definition we have

p̃wk,h = Λ̃−1
k,h

[
k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)
p̃Vk,h+1(s

i
h+1) + ϕ1

]
Then, we have∥∥∥ p̃w

∥∥∥2
2
=

∥∥∥∥∥Λ̃−1
k,h

[
k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)
p̃Vk,h+1(s

i
h+1) + ϕ1

]∥∥∥∥∥
2

2

≤ k

k−1∑
i=1

∥∥∥Λ̃−1
k,h

˜̄σ−2
i,hϕ

(
sih, a

i
h

)
p̃Vk,h+1(s

i
h+1) + Λ̃−1

k,hϕ1

∥∥∥2
2

≤ k

k−1∑
i=1

∥∥∥Λ̃−1
k,h

˜̄σ−2
i,hϕ

(
sih, a

i
h

)
p̃Vk,h+1(s

i
h+1)

∥∥∥2
2
+ k

k−1∑
i=1

∥∥∥Λ̃−1
k,hϕ1

∥∥∥2
2

≤ kH2

λ̃Λ

k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)⊤
Λ̃−1
k,hϕ

(
sih, a

i
h

)
+

k2L2

λ̃2
Λ

≤ kH2

λ̃Λ

trace

(
Λ̃−1
k,h

k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)⊤
ϕ
(
sih, a

i
h

))
+

k2L2

λ̃2
Λ
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where the first inequality holds from Cauchy-Schwartz, the second inequality holds from triangle

inequality, and the third inequality holds from the fact that p̃Vk,h+1 ≤ H ,
∥∥∥Λ̃−1

k,h

∥∥∥
2
≤ 1

λ̃Λ
, and

∥ϕ1∥2 ≤ L from the utility analysis (Lemma A.1). Now, we assume the eigen-decomposition of
matrix

∑k−1
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)⊤
ϕ
(
sih, a

i
h

)
is Q⊤ΣQ. Then, we have

trace

(
Λ̃−1
k,h

k−1∑
i=1

˜̄σ−2
i,hϕ

(
sih, a

i
h

)⊤
ϕ
(
sih, a

i
h

))
= trace

((
Q⊤ΣQ+ 2λ̃ΛId

)−1

Q⊤ΣQ

)
= trace

((
Σ+ 2λ̃ΛId

)−1

Σ

)
=

d∑
i=1

σi

σi + 2λ̃ΛId

≤ d

Thus, putting these together, we get∥∥∥ p̃wk,h

∥∥∥2
2
≤ kH2d

λ̃Λ

+
k2L2

λ̃2
Λ

≤ 2k2H2L2d

λ̃Λ

The same analysis holds for the pessimistic weight vector q̃w

Lemma E.2. For all stages h ∈ [H] and all episodes n ∈ N, the norm of the weight vector q̃wk,h can
be upper bounded as ∥∥∥ q̃wk,h

∥∥∥
2
≤ HKL

√
2d

λ̃Λ

Proof of Lemma E.2. The proof is exactly the same as Lemma E.1 except we use the pessimistic
value function class qVh.

Likewise, using similar analysis as above, we can also bound the weight vector w̃k,h.

Lemma E.3. For all stages h ∈ [H] and all episodes n ∈ N, the norm of the weight vector w̃k,h can
be upper bounded as ∥∥w̃k,h

∥∥
2
≤ H2KL

√
2d

λ̃Λ

Proof of Lemma E.3. The proof is exactly the same as Lemma E.1 except we use the pessimistic
value function class pV2

h.

F Covering Argument Results

Lemma F.1 (Lemma D.5 from [Jin et al. 2020,]). For a Euclidean ball with radius R in Rd, the
ε-covering number of this ball is upper bounded by

(1 + 2R/ε)d.

With the help of Lemma F.5, the covering number Nε of optimistic function class pVh can be upper
bounded by the following lemma:

Lemma F.2 (Lemma F.6 from [He et al. 2023,]). For optimistic function class pVh,

pVh =

{
V

∣∣∣∣∣ V (·) = max
a

min
1≤i≤l

min

(
H, rh(·, a)+w⊤

i ϕ(·, a)+β

√
ϕ(·, a)⊤Λ̃−1

i ϕ(·, a)

)
, ∥wi∥ ≤ L1, Λ̃i ⪰ λ̃ΛI

}
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where l = dH log
(
1 +K/dλ̃Λ

)
and L1 = HKL

√
2d
λ̃Λ

. Define the distance between two functions

V1 and V2 as V1, V2 ∈ pVh as dist(V1, V2) = maxs |V1(s) − V2(s)|. With respect to this distance
function, the ε-covering number Nε of the function class Vh can be upper bounded by

logNε ≤ dl log(1 + 4L1/ε) + d2l log
(
1 + 8

√
dβ2/

(
λ̃Λε

2
))

.

Proof of Lemma F.2. By letting Σ = β2
(
Λ̃
)−1

, we can reparametrize the function class pVh as

pVh =

{
V

∣∣∣∣∣ V (·) = max
a

min
1≤i≤l

min

(
H, rh(·, a)+w⊤

i ϕ(·, a)+
√

ϕ(·, a)⊤Σϕ(·, a)

)
, ∥wi∥ ≤ L1,Σ ⪰ β2λ̃ΛI

}

For any two functions V1, V2 ∈ pVh, let them take the form as seen above. Then, since min {H, ·},
min1≤i≤l, and maxa are contraction maps, we have

dist (V1, V2) = max
s∈S
|V1(s)− V2(s)|

≤ max
1≤i≤l,s∈S,a∈A

∣∣∣∣∣w⊤
1,iϕ(·, a) +

√
ϕ(·, a)⊤Σ1,iϕ(·, a)

)
− w⊤

2,iϕ(·, a) +
√
ϕ(·, a)⊤Σ2,iϕ(·, a)

)∣∣∣∣∣
≤ max

1≤i≤l,s∈S,a∈A
|(w1,i − w2,i)ϕ(s, a)|+ max

1≤i≤l,s∈S,a∈A

∣∣∣∣√ϕ(s, a)⊤ (Σ1,i − Σ2,i)ϕ(s, a)

∣∣∣∣
≤ max

1≤i≤l
∥w1,i − w2,i∥2 + max

1≤i≤l

√
∥Σ1,i − Σ2,i∥F

where the first inequality holds due to the contraction property, the second inequality holds due
to the fact that maxx |f(x) + g(x)| ≤ maxx |f(x)| + maxx |g(x)| and

∣∣√x−√y∣∣ ≤ √|x− y|,
and the last inequality holds from ∥ϕ(s, a∥2 ≤ 1. Now, let Cw be a ε/2 covering net of{
w ∈ Rd | ∥w∥2 ≤ L1

}
and let CΣ be a ε2/4 covering net of

{
Σ ∈ Rd×d | ∥Σ∥F ≤ d1/2β2λ̃−1

Λ

}
.

By Lemma F.1, we know

|Cw| ≤ (1 + 4L/ε)
d
, |CΣ| ≤

(
1 + 8d1/2β2/

(
λ̃Λε

2
))d2

We know that for any V1, V2 ∈ pVh, there exists w1, w2 ∈ Cw and Σ1,Σ2 ∈ CΣ such that
dist (V1, V2) ≤ ε. Thus, this means that the covering number |Nε| ≤ |Cw|l |CΣ|l. Thus, taking
logs, we get

logNε ≤ dl log(1 + 4L1/ε) + d2l log
(
1 + 8

√
dβ2/

(
λ̃Λε

2
))

.

Likewise, we can also upper bound the covering number of the pessimistic function class qVh
Lemma F.3 (Lemma F.7 from [He et al. 2023,]). For pessimistic function class qVh,

qVh =

{
V

∣∣∣∣∣ V (·) = max
a

max
1≤i≤l

max

(
H, rh(·, a)+w⊤

i ϕ(·, a)−β
√
ϕ(·, a)⊤Λ̃−1

i ϕ(·, a)

)
, ∥wi∥ ≤ L1, Λ̃i ⪰ λ̃λI

}

where l = dH log
(
1 +K/dλ̃Λ

)
and L1 = HKL

√
2d
λ̃Λ

. Define the distance between two functions

V1 and V2 as V1, V2 ∈ qVh as dist(V1, V2) = maxs|V1(s) − V2(s)|. With respect to this distance
function, the ε-covering number Nε of the function class V̌h can be upper bounded by

logNε ≤ dl log(1 + 4L1/ε) + d2l log
(
1 + 8

√
dβ2/

(
λ̃Λε

2
))

.
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Now that we have these results, the only result we require is an upper bound on the covering number
of the optimistic value function class squared. This result is provided below

Lemma F.4 (Lemma F.7 from [He et al. 2023,]). For the squared function class pV2
h, we define the

distance between two functions V 2
1 and V 2

2 in pV2
h as:

dist(V 2
1 , V

2
2 ) = max

s

∣∣V 2
1 (s)− V 2

2 (s)
∣∣.

With respect to this distance function, the ε-covering number Nε of the function class pV2
h can be

upper bounded by:

logNε ≤ dl log (1 + 8HL1/ε) + d2l log
(
1 + 32

√
dH2β2/

(
λ̃Λε

2
))

.

where l = dH log
(
1 +K/dλ̃Λ

)
and L1 = HKL

√
2d
λ̃Λ

.

G Auxiliary Results

Lemma G.1 (Lemma G.1 From [He et al. 2023,]). For any stage h ∈ [H] in a linear MDP and any
bounded function V : S → [0, B], there always exists a vector w ∈ Rd such that for all state-action
pairs (s, a) ∈ S ×A, we have

[PhV ](s, a) = w⊤ϕ(s, a),

where ∥w∥2 ≤ B
√
d.

Proof of Lemma G.1. By assumption of the linear MDP setting, we have

[PhV ](s, a) =

∫
Ph(s

′|s, a)V (s′) ds′ =

∫
ϕ(s, a)⊤V (s′) dθh(s

′)

= ϕ(s, a)⊤
∫

V (s′) dθh(s
′)

= ϕ(s, a)⊤w,

where we set w =
∫
V (s′) dθh(s

′). Additionally, the norm of w is upper bounded by∥∥∫ V (s′) dθh(s
′)
∥∥ ≤ maxs′ V (s′) ·

√
d = B

√
d.

Lemma G.2 (Azuma-Hoeffding Inequality, [Cesa-Bianchi and Lugosi 2006,]). Let {xi}ni=1 be a
martingale difference sequence with respect to a filtration {Gi} satisfying |xi| ≤M for some constant
M , xi is Gi+1-measurable, and E[xi|Gi] = 0. Then, for any 0 < δ < 1, with probability at least
1− δ, we have:

n∑
i=1

xi ≤M
√

2n log(1/δ).

Lemma G.3 (Lemma 11 in [Abbasi-Yadkori et al. 2011,]). Let {xk}Kk=1 be a sequence of vectors in
Rd, and let Σ0 be a d× d positive definite matrix. Define Σk = Σ0 +

∑k
i=1 xix

⊤
i . Then, we have:

k∑
i=1

min{1, x⊤
i Σ

−1
i−1xi} ≤ 2 log

(
detΣk

detΣ0

)
.

In addition, if ∥xi∥2 ≤ L for all i ∈ [K], then:
k∑

i=1

min{1, x⊤
i Σ

−1
i−1xi} ≤ 2 log

(
detΣk

detΣ0

)
≤ 2

(
d log

(
trace(Σ0) + kL2

d

)
− log detΣ0

)
.

Lemma G.4 (Lemma 12 in [Abbasi-Yadkori et al. 2011,]). Suppose A,B ∈ Rd×d are two positive
definite matrices satisfying A ⪯ B. Then, for any x ∈ Rd:

∥x∥A ≤ ∥x∥B ·

√
det(A)

det(B)
.
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Lemma G.5 (Theorem 1 in [Abbasi-Yadkori et al. 2011,]). Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=1
be a real-valued stochastic process such that ηt is Ft-measurable and ηt is conditionally R-sub-
Gaussian for some R ≥ 0, i.e.,

∀λ ∈ R, E
[
eληt | Ft−1

]
≤ exp

(
λ2R2

2

)
.

Let {xt}∞t=1 be an Rd-valued stochastic process such that xt is Ft−1-measurable. Assume that Z is
a d× d positive definite matrix. For any k ≥ 0, define

Zk = Z +

t∑
s=1

XsX
⊤
s

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

∥
k∑

i=1

xiηi∥2Z−1
k

≤ 2R2 log

(
det(Zk)

1/2 det(Z)−1/2

δ

)
.

Lemma G.6 (Confidence Ellipsoid, Theorem 2 in [Abbasi-Yadkori et al. 2011,]). Let {Gk}k≥1 be a
filtration, and {xk, ηk}k≥1 be a stochastic process such that xk ∈ Rd is Gk-measurable and ηk ∈ R
is Gk+1-measurable. Let L, σ,Σ, ε > 0, and µ∗ ∈ Rd. For k ≥ 1, let yk = ⟨µ∗, xk⟩ + ηk, and
suppose that ηk, xk satisfy:

E[ηk|Gk] = 0, |ηk| ≤ R, ∥xk∥2 ≤ L.

Define Zk = 2λ̃ΛI +
∑k

i=1 xix
⊤
i +K1, bk =

∑k
i=1 yixi, µk = Z−1

k bk, and:

βk = R

√√√√d log

(
1 + kL2/λ̃Λ

δ

)
.

Then, for any 0 < δ < 1, with probability at least 1− δ, we have:

∀k ≥ 1,

∥∥∥∥∥
k∑

i=1

xiηi

∥∥∥∥∥
Z−1

k

≤ βk, ∥µk − µ∗∥Zk
≤ βk +

√
λ∥µ∗∥2.

Proof of Lemma G.6. We will prove the following determinant-trace inequality. The result will then
hold by applying Lemma G.5

Lemma G.7 (Determinant-Trace Inequality). Suppose x1, x2, . . . , xK ∈ Rd and for any 1 ≤ k ≤ K,
∥xk∥2 ≤ L. Let Zk = 2λ̃ΛI +

∑K
k=1 xkx

⊤
k +K1 where ∥K1∥2 ≤ λ̃Λ. Then,

det(Zk) ≤ (3λ̃Λ + kL2/d)d.

Proof of Lemma G.7. Let α1, α2, . . . , αd denote the eigenvalues of Zk. Recall that from the utility
analysis (Lemma A.1), by construction, Zk must be positive-definite. Then, notice that det (Zk) =∏d

i=1 αk and trace (Zk) =
∑d

i=1 αk. By the AM-GM inequality

d
√
α1 . . . αd ≤

1

d

d∑
i=1

αi

Thus, we have that det (Zk) ≤ (trace (Zk) /d)
d. Furthermore, notice that

trace (Zk) = trace
(
2λ̃ΛI

)
+ trace

(
K∑

k=1

xsx
⊤
s

)
+ trace (K1)

≤ 3dλ̃Λ +KL2

where the inequality holds from the assumption that ∥xk∥2 ≤ L and ∥K1∥2 ≤ λ̃Λ from the utility
analysis. Thus, putting these together, we get the claim
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We now use the above result. From Lemma G.5, we have that

∥
k∑

i=1

xiηi∥2Z−1
k

≤ 2R2 log

(
det(Zk)

1/2 det(Z)−1/2

δ

)
.

In our case, we have Z = 2λ̃ΛI . Utilizing our determinant upper bound and the fact that det (Z) =(
2λ̃Λ

)d
, we have

log

(
det(Zk)

1/2

det(Z)1/2

)
≤ log


(
3λ̃Λ + kL2/d

)d/2
(
2λ̃Λ

)d/2


≤ d

2
log
(
1 + kL2/λ̃Λ

)
where the first inequality comes from Lemma G.7 and the last inequality holds just by upper bounding
the first constant term in the logarithm. Thus, we get the claim simply by taking square roots.

Lemma G.8 (Lemma 4.4 in [Zhou and Gu 2022,]). Let {σk, β̂k}k≥1 be a sequence of non-negative
numbers, α, γ > 0, {ak}k≥1 ⊂ Rd, and ∥ak∥2 ≤ A. Let {σ̄k}k≥1 and {Σ̂k}k≥1 be recursively
defined as follows:

Σ̂1 = 2λ̃ΛI, ∀k ≥ 1, σ̄k = max{σk, α, γ∥ak∥1/2Σ̂−1
k

}, Σ̂k+1 = Σ̂k + aka
⊤
k /σ̄

2
k

Let ι = log
(
1 + KA2

dλ̃Λα2

)
. Then, we have:

K∑
k=1

min{1, ∥ak∥Σ̂−1
k
} ≤ 2dι+ 2γ2dι+ 2

√
dι

√√√√ K∑
k=1

(σ2
k + α2).

Proof of Lemma G.8. We refer readers to Lemma 4.4 in [Zhou and Gu 2022,] for further details. Our
proofs are identical except for our usage of Lemma G.6 which is why our ι term is different.

Lemma G.9 (Theorem 4.3 in [Zhou and Gu 2022,]). Let {Gk}∞k=1 be a filtration, and let
{(xk, ηk)}k≥1 be a stochastic process such that xk ∈ Rd is Gk-measurable and ηk ∈ R is Gk+1-
measurable. Let L, σ > 0, and µ∗ ∈ Rd. For k ≥ 1, define yk = ⟨µ∗, xk⟩+ ηk. Suppose that ηk, xk

also satisfy
E[ηk | Gk] = 0, E[η2k | Gk] ≤ σ2, |ηk| ≤ R, ∥xk∥2 ≤ L.

For k ≥ 1, let

Zk = λI +

k∑
i=1

xix
⊤
i , bk =

k∑
i=1

yixi, µk = Z−1
k bk,

and
βk = Õ

(
σ
√
d+ max

1≤i≤k
|ηi|min{1, ∥xi∥Z−1

i−1
}
)
.

Then, for any 0 < δ < 1, with probability at least 1− δ, for all k ∈ [K], we have∥∥∥∥∥
k∑

i=1

xiηi

∥∥∥∥∥
Z−1

k

≤ βk, and ∥µk − µ∗∥Zk
≤ βk +

√
λ∥µ∗∥2.
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