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Abstract

Reinforcement Learning with Human Feedback (RLHF) has become crucial for
aligning Large Language Models (LLMs) with human intent. However, existing
offline RLHF approaches suffer from overoptimization, where language models
degrade by overfitting inaccuracies and drifting from preferred behaviors observed
during training [Huang et al., 2025]. Recent methods introduce Distributionally
Robust Optimization (DRO) to address robustness under preference shifts, but
these methods typically lack sample efficiency and rarely consider diverse human
preferences [Mandal et al., 2025, Xu et al., 2025, Chakraborty et al., 2024]. In this
work, we propose DRO-REBEL, a family of distributionally-robust variants of the
efficient REBEL framework [Gao et al., 2024], instantiating ambiguity sets via
Kullback–Leibler (KL), Chi-squared (χ2), and type-p Wasserstein distances. We
derive novel dual reformulations that reduce each robust policy update to a simple
regression problem, and we prove both “slow” O(n−1/4) and “fast” O(n−1/2)
estimation-error rates under standard linear-policy and data-coverage assumptions.

1 Introduction

RLHF has emerged as one of the most important stages of aligning LLMs with human intent
[Christiano et al., 2023, Ziegler et al., 2020]. Typically after supervised fine-tuning (SFT), an
additional alignment phase is often required to refine their behavior based on human feedback. The
alignment of LLMs with human values and preferences is a central objective in machine learning,
enabling these models to produce outputs that are useful, safe, and aligned with human intent. In
RLHF, human evaluators provide preference rankings that are subsequently utilized to train a reward
model, guiding a policy optimization step to maximize learned rewards [Ouyang et al., 2022]. Despite
its success, standard RLHF methodologies are fragile mainly due to three reasons: (i) Assumption
that one reward model can model diverse human preferences: Many RLHF methodologies including
popular methods such as Direct Preference Optimization (DPO) [Rafailov et al., 2024] and Proximal
Policy Optimization (PPO) [Schulman et al., 2017] assume that a single reward function can model
and accurately capture diverse human preferences. In reality, human preferences are highly diverse,
context-dependent, and distributional, making it infeasible to represent them within one single reward
function. To this end, there has been work done in creating Bayesian frameworks for robust reward
modeling [Yan et al., 2024], modeling loss as a weighted combination of different topics and using
out-of-distributon detection to reject bad bahavior [Bai et al., 2022], or formulating a mixture of
reward models [Chakraborty et al., 2024]. (ii) Reward hacking: Alignment depends on the quality
of the human preference data collected. Unfortunately, this process is inherently noisy and prone
to bias, conflicting opinions, and inconsistency which leads to misaligned preference estimation.
This issue is exacerbated by reward hacking where instead of learning reward functions that are
aligned with genuine human intent, models learn undesirable shortcuts to maximize the estimated



reward function. Subsequently, these models appear to generate responses that appear aligned but
deviate from human intent. There are some works that directly address this such as [Bukharin et al.,
2024]. (iii) Distribution shift: Standard RLHF alignment algorithms use static preference datasets
for training, collected under controlled conditions. However, the preferences of real-world users
can often be out-of-distribution from that of the training data, depending on several factors such as
geographic location, demographics, etc. Thus, a language model in the face of distribution shift
may see catastrophic degradation in performance due to overfitting inaccuracies and diverging from
human-preferred responses encountered in training data [LeVine et al., 2024, Kirk et al., 2024, Casper
et al., 2023]. We focus on the problem of distribution shift, also known as overoptimization [Huang
et al., 2025].

Recently, distributionally robust RLHF methods have emerged to tackle robustness challenges under
distributional shifts in prompts and preferences [Mandal et al., 2025, Xu et al., 2025]. Specifically,
Mandal et al. [2025] and Xu et al. [2025] introduced DRO variants of popular RLHF methods, namely
DPO and PPO, employing uncertainty sets defined via Chi-Squared (χ2), type-p Wasserstein, and
Kullback–Leibler (KL) divergences. Unfortunately, it is known that PPO requires multiple heuristics
to enable stable convergence (e.g. value networks, clipping), and is notorious for its sensitivity to
the precise implementation of these components. Recently, Gao et al. [2024] proposed REBEL, an
algorithm that cleanly reduces the problem of policy optimization to regressing the relative reward
between two completions to a prompt in terms of the policy. They find that REBEL avoids the use
of "unjustified" heuristics like PPO and enjoys strong convergence and regret guarantees, similar to
Natural Policy Gradient [Kakade, 2001], while also being scalable due to not requiring inversion
of the Fisher information matrix. It should be noted that REBEL is much more sample efficient
compared to methods like DPO and PPO.

Our contributions. Inspired by the strong theoretical guarantees of REBEL in terms of sample
efficiency and simplicity, we introduce DRO variants of REBEL for uncertainty sets defined via
type-p Wasserstein, KL, and χ2 divergences.

• Extends REBEL to multiple ambiguity sets. We introduce DRO–REBEL, a family of
robust REBEL updates instantiated under type-p Wasserstein, KL, and χ2 uncertainty sets.
Using Fenchel duality (or strong duality for Wasserstein), each robust policy update reduces
to a simple relative-reward regression, inheriting REBEL’s scalability.

• Provides sharper slow-rate guarantees. Under standard linear reward function class,
log-linear policy, and data-coverage assumptions, we prove that every DRO–REBEL variant
achieves an O(n−1/4) “slow” estimation-error rate. Our analysis tightens the constants
compared to prior DRO-DPO [Xu et al., 2025, Mandal et al., 2025] results by eliminating
hidden logistic/exponential factors by the use of simple linear regression rather than logistic
regression.

• Recovers optimal fast-rate guarantees. By developing a localized Rademacher-complexity
argument for our regression-based loss, we show that each DRO–REBEL variant attains the
minimax-optimal O(n−1/2) “fast” parametric rate, even under distributional shifts, closing
the gap between robust and non-robust RLHF methods.

• Improves curvature and stability. We demonstrate that DRO–REBEL’s strong-convexity
modulus scales purely with the data-coverage constant λ (and our step-size η), avoiding the
exponential sensitivity to reward-link curvature found in WDPO/KLDPO [Xu et al., 2025].
This yields uniformly smaller excess-risk bounds and more stable updates.

1.1 Related Work

Robust RLHF: There has been some recent work in this area that aims to address RLHF overop-
timization. Bai et al. [2022] propose addressing distribution shift by adjusting the weights on the
combination of loss functions based on different topics (harmless vs. helpful) for robust reward
learning. They also propose using out-of-distribution detection to filter and reject known types of
bad behavior. [Chakraborty et al., 2024] proposes a MaxMin approach to RLHF, using mixtures of
reward models to honor diverse human preference distributions through an expectation-maximization
approach, and a robust policy based on these rewards via a max-min optimization. In a similar vein,
Padmakumar et al. [2024] tries to augment the human preference datasets with synthetic preference
judgments in order to estimate the diversity of user preferences. There has also been some founda-
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tional theoretical work towards this problem. Yan et al. [2024] proposed a Bayesian reward model
ensemble to model the uncertainty set of the reward functions and systematically choose rewards in
the uncertainty set with the tightest confidence band. Another line of work focuses on robust reward
modeling as an alternative to distributionally robust optimization. For instance, Bukharin et al. [2024]
propose R3M, a method that explicitly models corrupted preference labels as sparse outliers. They
formulate reward learning as an ℓ1-regularized maximum likelihood estimation problem, enabling
robust recovery of the underlying reward function even in the presence of noisy or inconsistent human
feedback. While our work focuses on embedding robustness at the policy optimization level using
distributional uncertainty sets (e.g., χ2, and Wasserstein), R3M represents a complementary direction
that enhances robustness by improving the reliability of the reward model itself.

Robust DPO: There have been several works that approach this problem using DRO. Huang et al.
[2025] proposed χPO that implements the principle of pessimism in the face of uncertainty via regu-
larization with the χ2-divergence for avoiding reward hacking/overoptimization w.r.t. the estimated
reward. Wu et al. [2024] focus on noisy preference data and categorize the types of noise in DPO,
introducing Dr. DPO to improve pairwise robustness through a DRO formulation with a tunable
reliability parameter. Hong et al. [2024] propose an adaptive preference loss grounded in DRO that
adjusts scaling weights across preference pairs to account for ambiguity in human feedback, enhanc-
ing reward estimation flexibility and policy performance. Separately, Zhang et al. [2024] introduce a
lightweight uncertainty-aware approach called AdvPO, combining last-layer embedding-based uncer-
tainty estimation with a DRO formulation to address overoptimization in reward-based RLHF. There
are two related works that are most similar with our approach. Xu et al. [2025] develop Wasserstein
and KL-based DRO formulations of Direct Preference Optimization (WDPO and KLDPO), providing
sample complexity bounds and scalable gradient-based algorithms. Their methods achieve improved
alignment performance under shifting user preference distributions. Similarly, Mandal et al. [2025]
propose robust variants of both reward-based and reward-free RLHF methods, incorporating DRO
into the reward estimation and policy optimization phases using Total Variation and Wasserstein
distances. Their algorithms retain the structure of existing RLHF pipelines while providing theoretical
convergence guarantees and demonstrating robustness to out-of-distribution (OOD) tasks.

Distributionally Robust Learning: The DRO framework has been applied to various areas ranging
from supervised learning [Namkoong and Duchi, 2017, Shah et al., 2020], reinforcement learning
[Zhang et al., 2020, Yang et al., 2021], and multi-armed bandits [Gao et al., 2022, Zhou et al., 2022].
There is a wealth of theoretical results using f-divergences and Wasserstein distances developed for
tackling problems in this setting [Duchi and Namkoong, 2022, Shapiro and Xu, 2022].

2 Preliminaries

2.1 Notations

We will denote sets using calligraphic letters i.e. S,A,Z . When we refer to the norm ||x||, we are
referring to the Euclidean norm. For a measure P, we refer to the empirical measure Pn to mean
drawing samples x1, . . . , xn

i.i.d∼ P with Pn = 1
n

∑n
i=1 δxi

where δ is the Dirac measure. We denote
l(z; θ) to be the loss incurred by sample z with policy parameter θ. We denoteM (Z) to be the set
of Borel measures supported on set Z . Lastly, we denote λmin(A) to be the minimum eigenvalue of
a symmetric matrix A ∈ Sn.

2.2 Divergences

In this section, we will define the divergences that we will use to define our ambiguity sets in the
DRO setting.
Definition 2.1 (Type-p Wasserstein Distance). The type-p (p ∈ [1,∞)) Wasserstein distance between
two distributions P,Q ∈M (Ξ) is defined as

Wp (P,Q) =

(
inf

π∈Π(P,Q)

∫
Rd×Rd

d(ξ, η)pπ(dξ, dη)

)1/p

where π is a coupling between the marginal distributions ξ ∼ P and η ∼ Q and d is a pseudometric
defined on Z .
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Definition 2.2 (Kullback-Leibler (KL) Divergence).

DKL(P ||Q) =

∫
Ξ

log

(
dP
dQ

)
dP

Definition 2.3 (Chi-Squared Divergence). If P≪ Q,

Dχ2(P ||Q) =

∫
Ξ

(
dP
dQ
− 1

)2

dQ

Using these, we can define our ambiguity sets as follows

Definition 2.4 (Distributional Uncertainty Sets). Let ε > 0 and P◦ ∈M (Z). Then, we define the
ambiguity set as

Bε (P◦;D) = {P ∈M (Z) : D (P,P◦) ≤ ε}

where D(·, ·) is a distance metric between two probability distributions i.e. type-p Wasserstein, KL,
χ2.

2.3 Reinforcement Learning from Human Feedback (RLHF)

Reinforcement Learning from Human Feedback (RLHF), as introduced by Christiano et al. [2023]
and later adapted by Ouyang et al. [2022], consists of two primary stages: (1) learning a reward model
from preference data, and (2) optimizing a policy to maximize a KL-regularized value function. We
assume access to a preference dataset Dsrc = {(x, a1, a2)}, where x ∈ S is a prompt, and a1, a2 ∈ A
are two possible completions of the prompt x generated from a reference policy πSFT(· | x) (e.g., a
supervised fine-tuned model). πSFT(· | x) involves fine-tuning a pre-trained LLM through supervised
learning on high-quality data, curated for downstream tasks. A human annotator provides preference
feedback indicating a1 ≻ a2 | x. The most common model for preference learning is the Bradley-
Terry (BT) model, which assumes that

P∗(a1 ≻ a2 | x) = σ
(
r⋆(x, a1)− r⋆(x, a2)

)
=

1

1 + exp (r⋆(x, a1)− r⋆(x, a2))
,

where r⋆ is the underlying (unknown) reward function used by the annotator. The first step in RLHF
is to learn a parametrized reward model rϕ(s, a) by solving the following maximum likelihood
estimation problem:

rϕ ← argmin
rϕ
−E(x,a1,a2)∼Dsrc

[
log σ

(
rϕ(x, a

1)− rϕ(x, a2)
)]
.

Given the learned reward model rϕ, the second step is to solve the KL-regularized policy optimization
problem:

πθ ← argmax
πθ

Ex∼Dsrc,y∼πθ(·|x)

[
rϕ(x, y)− β log

πθ(y | x)
πSFT(y | x)

]
,

2.4 REBEL: Regression-Based Policy Optimization

Let (x, a) represent a prompt-response pair, where x ∈ S is a context or prompt, and a ∈ A is a
response (e.g., a sequence of tokens or actions). We assume access to a reward function r(x, a),
which may be a learned preference model [Christiano et al., 2023]. Let π : S → ∆(A) be a stochastic
policy mapping prompts to distributions over responses. We denote the prompt distribution as ρ, and
let πθ(a | x) denote a parameterized policy with parameters θ. The REBEL (REgression to RElative
REward-Based RL) [Gao et al., 2024] algorithm directly regresses to relative reward differences
through KL-constrained updates. A high-level description is given in Algorithm 1.
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Algorithm 1 REBEL: REgression to RElative REward-Based RL
1: Input: Reward function r, policy class Π = {πθ : θ ∈ Θ}, base distribution µ, learning rate η
2: Initialize policy πθ0
3: for t = 0 to T − 1 do
4: Collect dataset Dt = {(x, a1, a2)} with x ∼ ρ, a1 ∼ πt(· | x), a2 ∼ µ(· | x)
5: Update policy by solving:

θt+1 = argmin
θ∈Θ

∑
(x,a1,a2)∈Dt

(
1

η

[
log

πθ(a
1 | x)

πθt(a
1 | x)

− log
πθ(a

2 | x)
πθt((a

2 | x)

]
−
[
r(x, a1)− r(x, a2)

])2

(1)

6: end for

At each iteration, REBEL approximates the solution to a KL-constrained policy optimization objec-
tive:

πt+1 = argmax
π∈Π

Ex∼ρ,a∼π(·|x) [r(x, a)]−
1

η
Ex∼ρ [KL (π(· | x) ∥πt(· | x))] ,

which encourages reward maximization while regularizing the policy to remain close to the previous
iterate. This objective is particularly well-suited for fine-tuning language models using learned or
noisy reward signals while maintaining stability. Adapting REBEL for distributionally robust RLHF
is particularly appealing because it offers both theoretical and practical advantages over existing
methods like PPO and DPO. Whereas PPO relies on heuristic mechanisms (e.g., clipping, value
baselines) and DPO requires strong assumptions about preference modeling, REBEL reduces policy
optimization to a sequence of regression problems on relative rewards—eliminating the need for
explicit value functions or constrained optimization. This simplicity translates into significantly
lower sample complexity. In particular, REBEL can achieve convergence guarantees comparable
to or better than NPG , with a sample complexity that scales favorably due to its variance-reduced
gradient structure. Empirically, REBEL has been shown to converge faster than PPO and outperform
DPO in both language and image generation tasks. Building on this regression-based perspective,
our DRO–REBEL algorithms simply replace the standard squared-error loss in each REBEL update
with its robust counterpart under the chosen divergence (Wasserstein, KL, or χ2). As a result,
DRO–REBEL inherits REBEL’s stability and low sample complexity while gaining worst-case
robustness guarantees under distributional shifts.

3 Distributionally Robust REBEL

In this section, we will formally define the DRO variants of REBEL under type-p Wasserstein, KL,
and χ2 divergence ambiguity sets. We must first define the nominal data-generating distribution.
Our definitions follow those stated by Xu et al. [2025]. Recall the sampling procedure mentioned in
Section 2.3: We have some initial prompt x ∈ S that we will assume is sampled from some prompt
distribution ρ. We will sample two responses a1, a2 i.i.d∼ πSFT(· | x). Following Zhu et al. [2023], let
y ∈ {0, 1} be a Bernoulli random variable where y = 1 if a1 ≻ a2 | x and y = 0 if a2 ≻ a1 | x with
probability corresponding to the Bradley-Terry model P∗. Using this, we can now define the nominal
data-generating distribution.
Definition 3.1 (Nominal Data-Generating Distribution). Let Z = S × A×A× {0, 1}. Then, we
define the nominal data-generating distribution as follows

P◦ (x, a1, a2, y) = ρ(x)πSFT
(
a1 | x

)
πSFT

(
a2 | x

) [
1{y=1}P∗ (a1 ≻ a2 | x)+ 1{y=0}P∗ (a2 ≻ a1 | x)]

where x ∼ ρ and y ∼ Ber
(
P∗ (a1 ≻ a2 | ·)). We will denote z = (x, a1, a2, y) ∈ Z and P◦(z) =

P◦(x, a1, a2, y). We will also assume P◦ generates dataset D = {zi}ni=1 used for learning i.e.
zi ∼ P◦.

3.1 Distributionally Robust REBEL

From the REBEL update (Equation (1)), we define the pointwise loss as follows
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ℓ(z; θ) =
1

η

([
log

πθ(y | x)
πt(y | x)

− log
πθ(y

′ | x)
πt(y′ | x)

]
− [r(x, y)− r(x, y′)]

)2

For ε > 0, define the ambiguity set as Bε (P◦;D) for nominal distribution P◦ and distance measureD.
Using the DRO framework, we consider the following distributionally robust optimization problem:

min
θ

max
P∈Bε(P◦;D)

Ez∼P [ℓ(z; θ)]

which directly captures our objective: finding the best policy under worst-case distributional shift.
Now, let us define the following D-DRO-REBEL loss function:

LD (θ; ε) = sup
P∈Bε(P◦;D)

Ez∼P [ℓ(z; θ)]

where Bε(P◦;D) denotes an ambiguity set centered at the nominal distribution P◦, defined using
a divergence or distance D. This formulation is general and allows us to instantiate a family of
distributionally robust REBEL objectives by choosing different D—such as the type-p Wasserstein
distance, Kullback–Leibler (KL) divergence, or chi-squared (χ2) divergence. Each choice of D yields
a different robustness profile and tractable dual formulation, enabling us to tailor the algorithm to
specific distributional shift scenarios. When the nominal distribution P◦ is replaced with its empirical
counterpart, i.e., P◦

n := 1
n

∑n
i=1 δzi , where z1, . . . , zn are n i.i.d. samples from P◦, we use LD

n (θ; ε)
to denote the empirical D-REBEL loss incurred by the policy parameter θ.

4 Theoretical Results

In this section, we will provide several sample complexity results for DRO-REBEL under the
ambiguity sets previously mentioned. First, we state some assumptions that we make in our analysis

Assumption 1 (Linear reward class). Let ϕ : S × A → Rd be a known d-dimensional feature
mapping with supx,a ||ϕ(x, a)||2 ≤ 1 and ω ∈ Rd such that ||ω||2 ≤ F for F > 0. We consider the
following class of linear reward functions:

F =
{
rω : rω(x, a) = ϕ(x, a)⊤ω

}
Assumption 2 (Log-linear policy class). Let ψ : S × A → Rd be a known d-dimensional feature
mapping with maxx,a ∥ψ(x, a)∥2 ≤ 1. Assume a bounded policy parameter set Θ := {θ ∈ Rd :
∥θ∥2 ≤ B}. We consider the following class of log-linear policies:

Π =

{
πθ : πθ(a | x) =

exp
(
θ⊤ψ(x, a)

)∑
a′∈A exp (θ⊤ψ(x, a′))

}
.

Remark 1. These are standard assumptions in the theoretical analysis of RL algorithms [Agarwal
et al., 2021b, Modi et al., 2020], RLHF [Zhu et al., 2023], and DPO [Nika et al., 2024, Chowdhury
et al., 2024]. Our analysis can be extended to neural policy classes where θ⊤ψ(s, a) is replaced by
fθ(s, a), where fθ is a neural network satisfying twice differentiability and smoothness assumptions.

We also make the following data coverage assumption on the uncertainty set Bε (P◦;D):

Assumption 3 (Regularity condition). There exists λ > 0 such that

ΣP := E(x,a1,a2,y)∼P

[(
ψ(x, a1)− ψ(x, a2)

) (
ψ(x, a1)− ψ(x, a2)

)⊤] ⪰ λI, ∀P ∈ P(ρ;P◦).

Remark 2. Similar assumptions on data coverage under linear architecture models are standard
in the offline RL literature [Agarwal et al., 2021a, Wang et al., 2020, Jin et al., 2022]. Implicitly,
Assumption 2 imposes λ ≤ λmin(ΣP◦), meaning the data-generating distribution P◦ must have
sufficient coverage.
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4.1 "Slow Rate" Estimation Errors

Define θWp ∈ argminθ∈Θ LWp(θ) be the true optimal policy estimate and the empirical estimate as
θ̂
Wp
n ∈ argminθ∈Θ L

Wp
n (θ). First, we provide a sample complexity result for convergence of robust

policy estimation using REBEL. Our proof technique hinges on showing that LWp is strongly convex.

Lemma 1 (Strong convexity ofLWp ). Let ℓ(z; θ) be as defined in the REBEL update. The Wasserstein-
DRO-REBEL loss

LWp (θ; ε) = sup
P∈Bε(P◦;Wp)

Ez∼P [ℓ(z; θ)] ,

is 2λ/η-strongly convex where λ is from the regularity condition in Assumption 3 and η is from the
step size defined in the DRO update 1

We now present our "slow rate" results on the sample complexity for the convergence of the robust
policy parameter.

Theorem 1 ("Slow" Estimation error of θWp ). Let δ ∈ (0, 1). Then, with probability atleast 1− δ

||θWp − θ̂Wp
n ||22 ≤

1

λ
K2

g

√
2 log (2/δ)

n

where λ is from the regularity condition in Assumption 3 and Kg = 4B + 2F where B is from the
assumption that the policy parameter set is bounded in Assumption 2 and F is from the Assumption 1.

Proof sketch. For the full proof, we refer readers to Appendix C. At a high level, we first prove that
ℓ(z; θ) is uniformly bounded and is 4Kg/η-Lipschitz in θ where Kg = 4B + 2F . Using this, we
can prove that Ez∼P [ℓ(z; θ)] is 2/η-strongly convex in || · ||ΣP . Intuitively taking the supremum over
P should preserve the convex combination and the negative quadratic term and doing this analysis
formally allows us to show that LWp (θ; ε) is 2/η-strongly convex in || · ||2. The detailed proof for
strong convexity can be found in Lemma 19. Strong duality of Wasserstein DRO [Gao and Kleywegt,
2022] (Corollary 2) allows us to reduce the difference |LWp (θ; ε) − LWp

n (θ; ε)| to the concen-
tration

∣∣Ez∼P◦
n
[ℓ∆(z; θ)]− Ez∼P◦ [ℓ∆(z; θ)]

∣∣ where ℓ∆(z; θ) = infz′∈Z {∆dp(z, z′)− ℓ(z′; θ)} is
the Moreau envelope of −ℓ. We then use Hoeffding’s inequality to obtain a concentration re-
sult which is uniform over θ ∈ Θ and ∆. We can now do a "three-term" decomposition of
LWp

(
θWp ; ε

)
−LWp

(
θ̂
Wp
n ; ε

)
intoLWp

(
θWp ; ε

)
−LWp

n

(
θWp ; ε

)
,LWp

n

(
θWp ; ε

)
−LWp

n

(
θ̂
Wp
n ; ε

)
,

and LWp
n

(
θ̂
Wp
n ; ε

)
− LWp

(
θ̂
Wp
n ; ε

)
and bound the first and last term by Hoeffding and the second

term by 0. Using strong convexity of LWp , we can get the estimation error. The detaled proof for the
"slow rate" estimation error can be found at C

We prove similar results for a KL and χ2 ambiguity set using the same ideas used in the Wasserstein
ambiguity set setting. We state the "slow rate" estimation rates below and defer the proofs to Appendix
D and Appendix E

Theorem 2 ("Slow" Estimation error of θKL). Let δ ∈ (0, 1). Then, with probability atleast 1− δ

∥θKL − θ̂KL
n ∥22 ≤

η

λ

√
2λ̄2 exp

(
L/λ̄

)
log (2/δ)

n

where λ is from the regularity condition in Assumption 3 and η is the stepsize defined in in the DRO
update 1

Theorem 3 ("Slow" Estimation error of θχ
2

). Let δ ∈ (0, 1). Then, with probability atleast 1− δ

∥θχ
2

− θ̂χ
2

n ∥22 ≤
K2

g

λ

(
1 +

K2
g

4λ̄η

)√
2 log(2/δ)

n

where λ is from the regularity condition in Assumption 3 and Kg = 4B + 2F where B is from the
assumption that the policy parameter set is bounded in Assumption 2, F is from the Assumption 1,
and η is from the step size defined in the DRO update 1.

7



Remark 3 (Estimation rate and improved coverage dependence). Although both WDPO Xu et al.
[2025] and DRO-REBEL achieve the same n−1/4 estimation-error rate, DRO-REBEL features
substantially tighter constants thanks to its regression-to-relative-rewards formulation and cleaner
strong-convexity analysis. In WDPO, the strong-convexity modulus is the product of the Bradley–Terry
curvature

γ =
β2e4βB

(1 + e4βB)2
and λ,

so that the squared-error bound scales as O
(
1/(γ λ)

)
and is exponentially sensitive to the logistic

scale β [Xu et al., 2025, Lemma 1, Theorem 1]. By contrast, Lemma 19 shows that the DRO-REBEL
loss LWp is (2λ/η)-strongly convex, yielding a bound of order O(1/λ) (up to the step-size η) with
no hidden logistic factors. Concretely, this sharper constant means that for any fixed coverage λ, our
excess-risk bound is smaller by the factor γ−1 = (1 + e4βB)2/(β2e4βB), which can be enormous
when βB is large or preferences are near-degenerate. Moreover, the same phenomenon appears in
the KL-DRO setting. Theorem 2 shows

∥∥θKL − θ̂KL
n

∥∥2
2
≤ η

λ

√
2 λ̄2 exp(L/λ̄) log(2/δ)

n
,

where λ̄ bounds the dual multiplier and L bounds the loss. In prior KLDPO analyses, the dependence
on exp(L/λ̄) is tangled with additional Bradley–Terry curvature terms; in DRO-REBEL it appears
only through the divergence parameter. Crucially, both Wasserstein and KL results rest on the very
same modelling assumptions:linear reward class (Assumption 1), log-linear policy class (Assumption
2), and data-coverage regularity (Assumption 3). This shows that DRO-REBEL’s improvements arise
purely from algorithmic simplicity rather than stronger distributional or curvature requirements.

With the above analysis, building on and refining the techniques of Xu et al. [2025], we recover
the same O(n−1/4) estimation-error rate but with substantially sharper constants. Xu et al. [2025]
observe that WDPO’s estimation error decays at O(n−1/4), while non-robust DPO already achieves
O(n−1/2). This slowdown arises because, in the robust setting, one cannot exchange the supremum
over distributions with the gradient operator on the empirical robust loss. As a result, the closed-form
concentration argument—key to the non-robust analysis—fails. Closing this gap and restoring the
optimal inverse square root rate for robust DPO remains an open problem. To close this gap, we
develop a localized Rademacher complexity analysis for DRO-REBEL which recovers the optimal
O(n−1/2) convergence rate even under Wasserstein ambiguity.

4.2 "Fast Rate" Estimation Errors

To state our main guarantee in its cleanest form, we observe that nothing exotic is needed beyond (i)
the population DRO objective has a uniform quadratic growth (via our data-coverage assumption), (ii)
each per-sample loss ℓ(z; θ) is Lipschitz in θ, which drives the Rademacher/Dudley control, and (iii)
each divergence admits a simple Fenchel-duality or direct bound showing LD(θ)− EP [ℓ(z; θ)] =
O(∆n) where ∆n = O(n−1). The following single “master theorem” then automatically yields
the parametric n−1/2-rate for all of our DRO variants, Wasserstein, KL, and χ2, by plugging in the
corresponding ∆n .

Theorem 4 (Parametric n−1/2-rate for DRO-REBEL). Let

θ̂n = argmin
θ∈Θ
LD
n

(
θ; εn

)
, θ⋆ = argmin

θ∈Θ
LD
(
θ; εn

)
and assume the usual strong-convexity and Lipschitz conditions, plus the “dual remainder”

LD(θ; εn) − EP◦
[
ℓ(z; θ)

]
≤ ∆n

Then for any fixed δ > 0, with probability atleast 1− δ

∥θ̂n − θ⋆∥22 = O
(

d
n + ∆n

)
and in particular if ∆n = O(n−1) then ∥θ̂n − θ⋆∥2 = OP (n

−1/2).
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Proof Sketch of Theorem 4. For the full proof, we refer readers to Appendix F. At a high level, for any
θ ∈ Θ, by using the triangle-inequality and the dual-remainder bound, we get

∣∣LD(θ)− LD
n (θ)

∣∣ ≤
2∆n+

∣∣M(θ)−Mn(θ)
∣∣.Next, let r = ∥θ−θ∗∥2 and defineFr =

{
ℓ(·, θ)−ℓ(·, θ∗) : ∥θ−θ∗∥ ≤ r}.

By a standard symmetrization (Lemma 8), Dudley entropy-integral (Corollary 5), and Bousquet’s
inequality (Theorem 6) argument, one shows with probability atleast 1− δ, supf∈Fr

∣∣Pnf − Pf
∣∣ =

O
(
r
√
d/n+ r

√
ln(1/δ)/n+ 1

n ln(1/δ)
)

. By assumption the population DRO-risk θ 7→ LD(θ; εn)

is α-strongly convex about θ∗. Thus we find that α
2 r

2 ≤ LD(θ)−LD(θ∗) ≤
[
LD(θ)−LD

n (θ)
]
+[

LD
n (θ∗)− LD(θ∗)

]
. Plugging in the two-term bound above (with θ = θ̂n) yields a quadratic-in-r

inequality α
2 r

2 ≤ 2∆n + O
(
r
√
d/n+ r

√
ln(1/δ)/n+ 1

n ln(1/δ)
)

. Rearranging and solving

the quadratic gives r = ∥θ̂n− θ∗∥2 = O
(√

d/n+
√
ln(1/δ)/n+

√
∆n

)
. In particular, choosing

∆n = O(n−1) yields the claimed OP (n
−1/2)-rate.

Using this theorem, we can now state the following "fast rate" estimation results for Wasserstein, KL,
and χ2. We defer the proofs to Appendix G, H, and I respectively.
Corollary 1 ("Fast" Estimation error of θWp ). Let δ ∈ (0, 1). Then, with probability atleast 1− δ

||θWp − θ̂Wp
n ||2 ≤

12c0Kg

λ

√
d

n
+

2c1Kg

λ

√
log(1/δ)

n
+

√
8Kg

λn
+

√
c2K2

g

λn
log(1/δ)

where c0, c1, c2 > 0 are some absolute constants, λ is from the regularity condition in Assumption
3, and Kg = 4B + 2F where B is from the assumption that the policy parameter set is bounded in
Assumption 2, and F is from the Assumption 1.
Corollary 2 ("Fast" Estimation error of θKL). Let δ ∈ (0, 1). Then, with probability atleast 1− δ

∥θKL − θ̂KL
n ∥2 ≤

12c0Kg

λ

√
d

n
+

2c1Kg

λ

√
log(1/δ)

n
+

√
K2

g

λn
+

√
c2K2

g

λn
log(1/δ)

where c0, c1, c2 > 0 are some absolute constants, λ is from the regularity condition in Assumption
3, and Kg = 4B + 2F where B is from the assumption that the policy parameter set is bounded in
Assumption 2, and F is from the Assumption 1.

Corollary 3 ("Fast" Estimation error of θχ
2

). Let δ ∈ (0, 1). Then, with probability atleast 1− δ

∥θχ
2

− θ̂χ
2

n ∥2 ≤
12c0Kg

λ

√
d

n
+

2c1Kg

λ

√
log(1/δ)

n
+

√
2K2

g

λn
+

√
c2K2

g

λn
log(1/δ)

where c0, c1, c2 > 0 are some absolute constants, λ is from the regularity condition in Assumption
3, and Kg = 4B + 2F where B is from the assumption that the policy parameter set is bounded in
Assumption 2, and F is from the Assumption 1.

Our fast-rate analysis shows that DRO-REBEL achieves the minimax-optimal O(n−1/2) estimation
error, even under a Wasserstein, KL, or χ2 ambiguity set, simply by combining strong convexity
with a localized Rademacher complexity argument. This matches the classical parametric rate in
M-estimation theory and parallels the finite-sample guarantees for generic Wasserstein DRO obtained
by Gao [2022]. Crucially, the same localized-complexity machinery could be applied to the WDPO
and KLDPO analyses of Xu et al. [2025] to upgrade their n−1/4 rates to n−1/2—albeit with larger
constants, since REBEL’s relative-reward regression loss is fundamentally simpler (no logistic link)
and has smaller Lipschitz and curvature parameters. In this way, DRO-REBEL both tightens constants
in the slow regime and offers a clear recipe for restoring the optimal n−1/2 convergence rate for
common robust preference-learning algorithms.

χ2-Based Preference Learning. Very recently, Huang et al. [2025] introduced χ2PO, a one-line
modification of Direct Preference Optimization (DPO) that replaces the usual log-link with a mixed
χ2 + KL link and implicitly enforces pessimism via the χ2-divergence. Their main result shows that
χ2PO achieves a sample-complexity guarantee scaling as

J(π∗)− J(π̂) ≲

√
Cπ∗ log(|Π|/δ)

n
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where Cπ∗ = 1 + 2Dχ2(π∗∥πref) is the single-policy concentrability coefficient (cf. Theorem
3.1 of Huang et al. [2025]). Our fast-rate analysis for the χ2-robust REBEL update (Corollary 5.3)
recovers exactly the sameO(n−1/2) parametric rate under analogous linear-policy, data-coverage, and
strong-convexity assumptions. In both cases the key is that χ2-regularization induces a heavy-tailed
density-ratio barrier and uniform quadratic growth, allowing a localized Rademacher complexity
argument to restore the minimax n−1/2 rate. Thus, the theoretical insights of Huang et al. [2025]
on the power of χ2–divergence to suppress overoptimization are fully consistent with—and indeed
validated by—our fast-rate guarantees for χ2-REBEL as a sample-efficient and stable optimizer under
preference noise.

5 Conclusion

In this work, we introduced DRO–REBEL, a unified family of distributionally-robust variants of
the REBEL framework for offline RLHF. By instantiating ambiguity sets via KL, χ2, and type-p
Wasserstein divergences and exploiting strong/Fenchel duality, each robust policy update reduces to
a simple relative-reward regression. Under standard linear-policy and data-coverage assumptions,
we proved that all DRO–REBEL variants achieve an O(n−1/4) “slow” estimation-error rate with
substantially tighter constants than prior DRO-DPO methods and, via a localized Rademacher-
complexity argument, recover the minimax-optimal O(n−1/2) “fast” parametric rate. Our analysis
shows that DRO–REBEL not only tightens slow-rate bounds but also restores the classical parametric
rate under distributional shifts.

Along the way, we learned that strong/Fenchel duality can collapse complex DRO updates into
tractable regressions, that improving constant factors in slow-rate bounds can have outsized practical
impact and, perhaps most surprisingly, that worst-case robustness and optimal O(n−1/2) convergence
need not be at odds. This work also raises several open questions: How should practitioners choose
or adapt between KL, χ2, and Wasserstein ambiguity sets in real RLHF pipelines? Can the same
dual-regression approach and fast-rate analysis be extended to neural (nonlinear) policy classes?
And how might one jointly integrate robust reward modeling with DRO–REBEL to further bolster
alignment under noisy or adversarial feedback?

Looking ahead, we plan to validate these theoretical findings empirically. We will train our robust
RLHF algorithms on the Unified-Feedback dataset [Jiang et al., 2023] and evaluate out-of-distribution
robustness on established reward-evaluation benchmarks such as Reward-Bench [Lambert et al., 2024],
MT-Bench [Zheng et al., 2023], and HHH-Alignment [Askell et al., 2021] With more time, we would
also conduct systematic hyperparameter sweeps (e.g. on ε, η, dual bounds), prototype DRO–REBEL
with transformer-parameterized policies, and explore adaptive schemes for selecting or mixing
ambiguity sets online. We anticipate that these experiments will corroborate our theoretical guarantees,
demonstrating superior generalization under preference shifts and resistance to overoptimization,
thereby providing a unified, principled methodology for reliably aligning LLMs with diverse and
uncertain human preferences. Due to time constraints, we were unable to complete these experiments
before submission. However, we are actively working on them over the summer and expect the
empirical results to align closely with our theory.

References
Alekh Agarwal, Nan Jiang, Sham M. Kakade, and Wen Sun. Reinforcement Learning: Theory and

Algorithms. 2021a. URL https://rltheorybook.github.io/.

Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021b. URL http://jmlr.org/papers/v22/19-736.html.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernan-
dez, Jackson Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark,
Sam McCandlish, Chris Olah, and Jared Kaplan. A general language assistant as a laboratory for
alignment, 2021. URL https://arxiv.org/abs/2112.00861.

10

https://rltheorybook.github.io/
http://jmlr.org/papers/v22/19-736.html
https://arxiv.org/abs/2112.00861


Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022.
URL https://arxiv.org/abs/2204.05862.

A. Beck. First-Order Methods in Optimization. MOS-SIAM Series on Optimization. Society
for Industrial and Applied Mathematics, 2017. ISBN 9781611974997. URL https://books.
google.com/books?id=wrk4DwAAQBAJ.

A. Beck. Introduction to Nonlinear Optimization: Theory, Algorithms and Applications with Python
and MATLAB. MOS-SIAM series on optimization. Society for Industrial and Applied Mathematics,
2023. ISBN 9781611977615. URL https://books.google.com/books?id=YDrizwEACAAJ.

S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic Theory of
Independence. OUP Oxford, 2013. ISBN 9780199535255. URL https://books.google.com/
books?id=5oo4YIz6tR0C.

Olivier Bousquet. A bennett concentration inequality and its application to suprema of empirical
processes. Comptes Rendus Mathematique, 334(6):495–500, 2002. ISSN 1631-073X. doi:
https://doi.org/10.1016/S1631-073X(02)02292-6. URL https://www.sciencedirect.com/
science/article/pii/S1631073X02022926.

Alexander Bukharin, Ilgee Hong, Haoming Jiang, Zichong Li, Qingru Zhang, Zixuan Zhang, and
Tuo Zhao. Robust reinforcement learning from corrupted human feedback, 2024. URL https:
//arxiv.org/abs/2406.15568.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, Tony Wang, Samuel
Marks, Charbel-Raphaël Segerie, Micah Carroll, Andi Peng, Phillip Christoffersen, Mehul Damani,
Stewart Slocum, Usman Anwar, Anand Siththaranjan, Max Nadeau, Eric J. Michaud, Jacob Pfau,
Dmitrii Krasheninnikov, Xin Chen, Lauro Langosco, Peter Hase, Erdem Bıyık, Anca Dragan,
David Krueger, Dorsa Sadigh, and Dylan Hadfield-Menell. Open problems and fundamental
limitations of reinforcement learning from human feedback, 2023. URL https://arxiv.org/
abs/2307.15217.

Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Furong Huang, Dinesh Manocha, Am-
rit Singh Bedi, and Mengdi Wang. Maxmin-rlhf: Alignment with diverse human preferences, 2024.
URL https://arxiv.org/abs/2402.08925.

Sayak Ray Chowdhury, Anush Kini, and Nagarajan Natarajan. Provably robust dpo: Aligning
language models with noisy feedback, 2024. URL https://arxiv.org/abs/2403.00409.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences, 2023. URL https://arxiv.org/abs/1706.
03741.

John Duchi and Hongseok Namkoong. Learning models with uniform performance via distributionally
robust optimization, 2020. URL https://arxiv.org/abs/1810.08750.

John C. Duchi and Hongseok Namkoong. Statistics of robust optimization: A generalized empirical
likelihood approach. Mathematics of Operations Research, 47(2):753–789, 2022.

Rui Gao. Finite-sample guarantees for wasserstein distributionally robust optimization: Breaking the
curse of dimensionality, 2022. URL https://arxiv.org/abs/2009.04382.

Rui Gao and Anton J. Kleywegt. Distributionally robust stochastic optimization with wasserstein
distance, 2022. URL https://arxiv.org/abs/1604.02199.

Yang Gao, Yuxin Xie, Nan Jiang, and Lihong Wang. Distributionally robust policy evaluation and
learning in offline contextual bandits. In International Conference on Artificial Intelligence and
Statistics, pages 8512–8530, 2022.

11

https://arxiv.org/abs/2204.05862
https://books.google.com/books?id=wrk4DwAAQBAJ
https://books.google.com/books?id=wrk4DwAAQBAJ
https://books.google.com/books?id=YDrizwEACAAJ
https://books.google.com/books?id=5oo4YIz6tR0C
https://books.google.com/books?id=5oo4YIz6tR0C
https://www.sciencedirect.com/science/article/pii/S1631073X02022926
https://www.sciencedirect.com/science/article/pii/S1631073X02022926
https://arxiv.org/abs/2406.15568
https://arxiv.org/abs/2406.15568
https://arxiv.org/abs/2307.15217
https://arxiv.org/abs/2307.15217
https://arxiv.org/abs/2402.08925
https://arxiv.org/abs/2403.00409
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1810.08750
https://arxiv.org/abs/2009.04382
https://arxiv.org/abs/1604.02199


Zhaolin Gao, Jonathan D. Chang, Wenhao Zhan, Owen Oertell, Gokul Swamy, Kianté Brantley,
Thorsten Joachims, J. Andrew Bagnell, Jason D. Lee, and Wen Sun. Rebel: Reinforcement learning
via regressing relative rewards, 2024. URL https://arxiv.org/abs/2404.16767.

Ilgee Hong, Zichong Li, Alexander Bukharin, Yixiao Li, Haoming Jiang, Tianbao Yang, and Tuo
Zhao. Adaptive preference scaling for reinforcement learning with human feedback, 2024. URL
https://arxiv.org/abs/2406.02764.

Audrey Huang, Wenhao Zhan, Tengyang Xie, Jason D. Lee, Wen Sun, Akshay Krishnamurthy, and Dy-
lan J. Foster. Correcting the mythos of kl-regularization: Direct alignment without overoptimization
via chi-squared preference optimization, 2025. URL https://arxiv.org/abs/2407.13399.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models with
pairwise ranking and generative fusion, 2023. URL https://arxiv.org/abs/2306.02561.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl?, 2022.
URL https://arxiv.org/abs/2012.15085.

Sham M Kakade. A natural policy gradient. In T. Dietterich, S. Becker, and Z. Ghahra-
mani, editors, Advances in Neural Information Processing Systems, volume 14. MIT
Press, 2001. URL https://proceedings.neurips.cc/paper_files/paper/2001/file/
4b86abe48d358ecf194c56c69108433e-Paper.pdf.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
diversity, 2024. URL https://arxiv.org/abs/2310.06452.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.
Rewardbench: Evaluating reward models for language modeling, 2024. URL https://arxiv.
org/abs/2403.13787.

E. L. Lehmann and G. Casella. Theory of Point Estimation. Springer, 2nd edition, 1998. Chapter 5
discusses Barankin-type bounds, including HCR.

Will LeVine, Benjamin Pikus, Anthony Chen, and Sean Hendryx. A baseline analysis of reward
models’ ability to accurately analyze foundation models under distribution shift, 2024. URL
https://arxiv.org/abs/2311.14743.

Debmalya Mandal, Paulius Sasnauskas, and Goran Radanovic. Distributionally robust reinforcement
learning with human feedback, 2025. URL https://arxiv.org/abs/2503.00539.

Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder Singh. Sample complexity of reinforcement
learning using linearly combined model ensembles. In Silvia Chiappa and Roberto Calandra,
editors, Proceedings of the Twenty Third International Conference on Artificial Intelligence and
Statistics, volume 108 of Proceedings of Machine Learning Research, pages 2010–2020. PMLR,
26–28 Aug 2020. URL https://proceedings.mlr.press/v108/modi20a.html.

Hongseok Namkoong and John C. Duchi. Variance-based regularization with convex objectives. In
Advances in Neural Information Processing Systems, volume 30, 2017.

Andi Nika, Debmalya Mandal, Parameswaran Kamalaruban, Georgios Tzannetos, Goran Radanović,
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A Auxiliary Technical Tools

A.1 Wasserstein Theory

Lemma 2 (Gao and Kleywegt [2022], Theorem 1; Strong Duality for DRO with Wasserstein Distance).
Consider any p ∈ [1,∞), any ν ∈ P(Ξ), any ρ > 0, and any Ψ ∈ L1(ν) such that the growth rate κ
of Ψ satisfies

κ := inf
{
η ≥ 0 :

∫
Ξ

Φ(η, ζ) ν(dζ) > −∞
}
<∞, (13)

where
Φ(η, ζ) := inf

ξ∈Ξ

{
η dp(ξ, ζ)−Ψ(ξ)

}
.

Then strong duality holds with finite optimal value vp = vD ≤ ∞, where the primal and dual
problems are

vp = sup
µ∈P(Ξ)

{∫
Ξ

Ψ(ξ)µ(dξ) : Wp(µ, ν) ≤ ρ
}
, (Primal) (2)

vD = inf
η≥0

{
η ρp −

∫
Ξ

inf
ξ∈Ξ

[
η dp(ξ, ζ)−Ψ(ξ)

]
ν(dζ)

}
. (Dual) (3)

Lemma 3 (Gao and Kleywegt [2022], Lemma 2(ii); Properties of the growth κ). Suppose that
ν ∈ Pp(Ξ). Then the growth rate κ in (13) is finite if and only if there exists ζ0 ∈ Ξ and constants
L,M > 0 such that

Ψ(ξ)−Ψ(ζ0) ≤ Ldp(ξ, ζ0) +M, ∀ ξ ∈ Ξ. (14)

Corollary 4. Consider any bounded loss function ℓ over a bounded space Ξ. Then the duality in
Lemma 2 holds.

Proof. Immediate from Lemma 3 by choosing L = diam(Ξ)p and M = supξ∈Ξ |Ψ(ξ)|.

A.2 Optimization

Lemma 4 (Beck [2023], Theorem 1.24; Linear Approximation Theorem). Let f : U → R be twice
continuously differentiable on an open set U ⊆ Rn, and let x, y ∈ U satisfy [x, y] ⊂ U . Then there
exists ξ ∈ [x, y] such that

f(y) = f(x) + ∇f(x)⊤(y − x) + 1
2 (y − x)

⊤∇2f(ξ) (y − x).

Lemma 5 (Beck [2017], Theorem 5.24; First-order characterizations of strong convexity). Let
f : E → (−∞,∞] be a proper, closed, convex function, and let σ > 0. The following are equivalent:

1. For all x, y ∈ dom(f) and λ ∈ [0, 1],

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)− σ

2 λ(1− λ) ∥x− y∥
2.

2. For all x ∈ dom(∂f), y ∈ dom(f) and g ∈ ∂f(x),

f(y) ≥ f(x) + ⟨g, y − x⟩ + σ
2 ∥y − x∥

2.
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Lemma 6 (Beck [2017], Theorem 5.25; Existence and uniqueness of minimizer). Let f : E →
(−∞,∞] be proper, closed, and σ-strongly convex with σ > 0. Then:

1. f has a unique minimizer x∗.

2. For all x ∈ dom(f),
f(x)− f(x∗) ≥ σ

2 ∥x− x
∗∥2.

A.3 Distributionally Robust Optimization

The f -divergence between distributions P and P0 on X is

Df (P∥P0) =

∫
X
f
(

dP
dP0

)
dP0, (15)

where f is a convex function (e.g. f(t) = t log t gives KL divergence). For a loss ℓ : X → R:
Lemma 7 (Duchi and Namkoong [2020], Proposition 1). Let Df be as in (15). Then

sup
P : Df (P∥P0)≤ρ

EP [ℓ(X)] = inf
λ≥0
η∈R

{
λ f∗

( ℓ(X)−η
λ

)
+ λ ρ + η

}
, (16)

where f∗(s) = supt≥0{st− f(t)} is the Fenchel conjugate of f .

A.4 Empirical Process Theory

Lemma 8 (van der Vaart and Wellner [1996], Lemma 2.3.1; Symmetrization). For every nondecreas-
ing, convex Φ : R→ R and class of measurable functions F ,

E∗
[
Φ
(
∥Pn − P∥F

)]
≤ E∗

[
Φ
(
2 ∥P 0

n∥F
)]
,

where the outer expectations E∗ are taken as in the preceding paragraph and P ◦
n is the symmetrized

process.

Theorem 5 (Boucheron et al. [2013], Theorem 11.6; Contraction Principle). Let x1, . . . , xn be
vectors whose real-valued components are indexed by a set T ; that is,

xi =
(
xi,s
)
s∈T , i = 1, . . . , n.

For each i = 1, . . . , n, let φi : R → R be a Lipschitz function with φi(0) = 0. Let ϵ1, . . . , ϵn be
independent Rademacher random variables, and let Ψ : [0,∞) → R be a nondecreasing, convex
function. Then

E
[
Ψ
(
sup
s∈T

n∑
i=1

ϵi φi(xi,s)
)]
≤ E

[
Ψ
(
sup
s∈T

n∑
i=1

ϵi xi,s

)]
and

E
[
Ψ
(

1
2 sup
s∈T

n∑
i=1

ϵi φi(xi,s)
)]
≤ E

[
Ψ
(
sup
s∈T

n∑
i=1

ϵi xi,s

)]
.

Corollary 5 (Boucheron et al. [2013], Corollary 13.2; Dudley’s Entropy Integral). Let T be a finite
pseudometric space and let (Xt)t∈T be a collection of random variables such that, for all t, t′ ∈ T
and all λ > 0,

logE
[
eλ (Xt−Xt′ )

]
≤ λ2 d2(t, t′)

2
.

Then for any fixed t0 ∈ T , if we set

δ = sup
t∈T

d(t, t0) and H(u, T ) = logN
(
u, T , d

)
denoting the covering-number entropy at scale u, it holds that

E
[
sup
t∈T

(
Xt −Xt0

)]
≤ 12

∫ δ/2

0

√
H
(
u, T

)
du .
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Theorem 6 (Bousquet [2002], Theorem 2.1). Let c > 0, let Xi be independent random variables
with distribution P , and let F be a class of functions f : X → R. Assume that for all f ∈ F ,

E[f(Xi)] = 0, ∥f∥∞ ≤ c.

Let σ > 0 satisfy
σ2 ≥ sup

f∈F
Var
(
f(Xi)

)
.

Define

Z = sup
f∈F

n∑
i=1

f(Xi), v = nσ2 + 2cE[Z], h(u) = (1 + u) ln(1 + u)− u.

Then for any x ≥ 0,

Pr
(
Z ≥ E[Z] + x

)
≤ exp

(
− v h

(
x
c v

))
.

Moreover, with probability at least 1− e−x,

Z ≤ E[Z] +
√
2x v +

c x

3
.

A.5 Variational Inequalities

Lemma 9 (van Handel [2016], Lemma 4.10; Gibbs Variational Principle). Let µ, ν ∈ P (Ξ) be Borel
probability measures supported on Ξ. Then

logEµ

[
ef
]
= sup

ν
{Eν [f ]−DKL (µ || ν)}

Theorem 7 ([Polyanskiy, 2017, Lehmann and Casella, 1998]; Hammersley-Chapman-Robbins (HCR)
lower bound). Let Θ be the set of parameters for a family of probability distributions {µθ : θ ∈ Θ}
on a sample space Ω. For any θ, θ′ ∈ Θ, let χ2

(
µθ′ ; µθ

)
denote the χ2–divergence from µθ to µθ′ .

For any scalar random variable ĝ : Ω→ R and any θ, θ′ ∈ Θ, we have

Varθ[ĝ] ≥ sup
θ′ ̸=θ
θ′∈Θ

(
Eθ′ [ĝ]− Eθ[ĝ]

)2
χ2
(
µθ′ ; µθ

) .

A.6 Concentration Inequalities

Lemma 10 (Boucheron et al. [2013], Lemma 2.2; Hoeffding’s Lemma). Let Y be a random
variable with E[Y ] = 0 and almost surely Y ∈ [a, b]. Define ψY (λ) = logE

[
eλY

]
. Then for all

λ ∈ R, ψ′′
Y (λ) ≤

(b−a)2

4 and consequently Y is sub-Gaussian with proxy variance (b − a)/2, i.e.

Y ∼ SG
(

b−a
2

)
.

Using Hoeffding’s lemma, one can prove Hoeffding’s inequality using a standard Chernoff bound
argument.

Lemma 11 (Hoeffding’s inequality). Let X1, . . . , Xn be independent with Xi ∈ [ai, bi] almost
surely, and define

S =

n∑
i=1

(Xi − E[Xi]).

Then for every t > 0,

P(S ≥ t) ≤ exp
(
− 2 t2∑n

i=1(bi−ai)2

)
.

In particular, if X1, . . . , Xn are i.i.d. with mean µ and support [a, b], then for all t > 0

P
(
| 1n

n∑
i=1

Xi − E [X] | ≥ t
)
≤ 2 exp

(
− 2nt2

(b−a)2

)
.
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B Uniform and Lipschitzness bounds of ℓ(z; θ)

We first prove that ℓ(z; θ) is uniformly bounded

Lemma 12 (Uniform bound on ℓ(z; θ)). Let Kg = supz,θ |g(z; θ)| ≤ 4B + 2F where ℓ(z; θ) =
1
η g(z; θ)

2 with z = (x, a1, a2) ∼ P◦. Then supz,θ |ℓ(z; θ)| = Kℓ =
1
ηK

2
g

Proof of Lemma 12. Since we have that πθ, πθt ∈ Π, notice that

log

(
πθ(a | x)
πθt(a | x)

)
= log πθ(a | x)− log πθt(a | x)

= log

(
exp

(
θ⊤ψ(x, a)

)∑
a′∈A exp (θ⊤ψ(x, a′))

)
− log

(
exp

(
θ⊤t ψ(x, a)

)∑
a′∈A exp

(
θ⊤t ψ(x, a

′)
))

= log
(
exp

(
(θ − θt)⊤ ψ(x, a)

))
+ log

(∑
a′∈A exp

(
θ⊤t ψ(x, a

′)
)∑

a′∈A exp (θ⊤ψ(x, a′)

)

≤ (θ − θt)⊤ ψ(x, a) + log

(∑
a′∈A exp (||θt||2||ψ(x, a′)||2)∑
a′∈A exp (||θ||2||ψ(x, a′)||2)

)
≤ (θ − θt)⊤ ψ(x, a)
≤ (||θ||2 + ||θt||2) ||ψ(x, a)||2
≤ 2B

where the first inequality holds from Cauchy-Schwartz, the second inequality holds from upper
bounding θ, θt, ψ from Assumption 2 and noticing that the second term equates to log(1) = 0. The
third inequality from Cauchy-Schwartz and the Triangle inequality, and the last inequality holds again
from upper bounding θ, θt, ψ. Now, we also have that r ∈ F . Thus,

r(x, a)− r(x, a′) = ϕ(x, a)⊤ω − ϕ(x, a′)⊤ω
≤ (||ϕ(x, a)||2 + ||ϕ(x, a′)||2) ||ω||2
≤ 2F

where the first inequality holds from Cauchy-Schwartz and Triangle inequality. Now recall the REBEL
update 1. Using these facts we have that |g(z; θ)| ≤ 4B + 2F so Kg = supz,θ |g(z; θ)| ≤ 4B + 2F .
Since ℓ(z; θ) = 1

η g(z; θ)
2, Kℓ =

1
ηK

2
g .

Now we prove that ℓ(z; θ) is 4Kg/η-Lispchitz in θ.

Lemma 13 (Lipschitz bound on ℓ(z; θ)). ℓ(z; θ) is 4Kg

η -Lispchitz in θ.

Proof of Lemma 13. First we compute the gradient∇θg(z; θ). Since we are looking at updates with
respect to θ, notice that we have the following:

∇θg(z; θ) = ∇θ [log πθ(a | x)− log πθ(a
′ | x)]

Now notice that

log πθ(a | x)− log πθ(a
′ | x) = log

(
exp

(
θ⊤ψ(x, a)

))
− log

(
exp

(
θ⊤ψ(x, a′)

))
= θ⊤ (ψ(x, a)− ψ(x, a′))

Thus we find that
∇θg(z; θ) = ψ(x, a)− ψ(x, a′)

Thus by Cauchy-Schwartz, ||∇θg(z; θ)||2 ≤ 2. Now since ℓ(z; θ) = 1
η g(z; θ)

2, we have that
∇θℓ(z; θ) =

2
η g(z; θ)∇θg(z; θ). From Lemma 12, we know that Kg = supz,θ |g(z; θ)| so we see

that ||∇θℓ(z; θ)||2 ≤ 4Kg/η. Thus we can conclude that ℓ(z; θ) is 4Kg/η-Lipschitz in θ.
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C Proof of "Slow Rate" Wasserstein-DRO-REBEL

First we prove that h(θ;P) = Ez∼P [ℓ(z; θ)] is strongly convex for any P.

Lemma 14 (Strong convexity of h). Let ℓ(z; θ) be the REBEL loss function. Assume that Assumption
3 holds. Then h(θ;P) = Ez∼P [ℓ(z; θ)] is 2/η-strongly convex with respect to norm || · ||ΣP where

ΣP := E(x,a1,a2,y)∼P

[(
ψ(x, a1)− ψ(x, a2)

) (
ψ(x, a1)− ψ(x, a2)

)⊤]

Proof of Lemma 14. From Lemma 13, we know that∇θℓ(z; θ) =
2
η g(z; θ)∇θg(z; θ) so we have

∇2
θℓ(z; θ) =

2

η
∇θg(z; θ)∇θg(z; θ)

⊤

We also know from Lemma 13 that∇θg(z; θ) = ψ(x, a)− ψ(x, a′). Thus we find that

∇2
θℓ(z; θ) =

2

η
(ψ(x, a)− ψ(x, a′)) (ψ(x, a)− ψ(x, a′))⊤

Then taking an expectation under P, we find that

∇2
θh(θ;P) =

2

η
Ez∼P

[(
ψ(x, a1)− ψ(x, a2)

) (
ψ(x, a1)− ψ(x, a2)

)⊤]
=

2

η
ΣP

Now fix θ, θ′ ∈ Θ. Let ∆ = θ − θ′. By the second-order Taylor expansion, there exists θ̃ on the line
segment between θ and θ′ such that

ℓ(z; θ′)− ℓ(z; θ)− ⟨∇θℓ(z; θ),∆⟩ =
1

2
∆⊤∇2

θℓ(z; θ̃)∆ ≥
µ

2
||∆||Σz

where µ = 2
η and Σz =

(
ψ(x, a1)− ψ(x, a2)

) (
ψ(x, a1)− ψ(x, a2)

)⊤
. Taking expectations we

find that

h(θ′;P) ≥ h(θ;P) + ⟨∇θg(z; θ),∆⟩+
µ

2
||∆||ΣP

Thus, h is µ-strongly convex in the || · ||ΣP norm.

We now establish strong convexity of LWp (θ; ε) = supP∈Bε(P◦;Wp) Ez∼P [ℓ(z; θ)]

Lemma 15 (Strong convexity of LWp ). Let l(z; θ) be the REBEL loss function. Then LWp (θ; ε) =
supP∈Bε(P◦;Wp) Ez∼P [ℓ(z; θ)] is 2λ/η-strongly convex with respect to Euclidean norm || · ||2 where
λ is the regularity parameter from Assumption 3.

Proof of Lemma 19. In Lemma 14, we proved strong convexity of h. By Lemma 5, for θ, θ′ ∈ Θ and
α ∈ [0, 1], this is equivalent to

h(αθ + (1− α)θ′;P) ≤ αh(θ;P) + (1− α)h(θ′;P)− µ

2
α(1− α)||θ − θ′||2ΣP

Taking the supremum over P preserves the convex combination and the negative quadratic term so
we get
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LWp (αθ + (1− α)θ′; ε) = sup
P∈Bε(P◦;Wp)

h(αθ + (1− α)θ′;P)

≤ sup
P∈Bε(P◦;Wp)

[
αh(θ;P) + (1− α)h(θ′;P)− µ

2
α(1− α)||θ − θ′||2ΣP

]
≤ αLWp (θ; ε) + (1− α)LWp (θ′; ε)− µ

2
α(1− α) inf

P∈Bε(P◦;Wp)
||θ − θ′||2ΣP

≤ αLWp (θ; ε) + (1− α)LWp (θ′; ε)− µ

2
α(1− α) inf

P∈Bε(P◦;Wp)
λmin (ΣP) ||θ − θ′||22

≤ αLWp (θ; ε) + (1− α)LWp (θ′; ε)− µλ

2
α(1− α)||θ − θ′||22

where the second inequality holds from supx (f(x) + g(x)) ≤ supx f(x) + supx g(x), the third
inequality holds by the fact that ΣP ⪰ λmin (ΣP) I , and the last inequality holds from Assumption 3.
Thus we conclude that LWp is µλ-strongly convex in the || · ||2 norm.

We are now ready to prove the "slow rate" estimation error of Wasserstein-DRO-REBEL.

Proof of 1. By strong duality for Wasserstein DRO 2, for fixed θ we have

LWp (θ; ε) = sup
P∈Bε(P◦;Wp)

Ez∼P [ℓ(z; θ)] = inf
∆≥0
{δεp − Ez∼P◦ [ℓ∆(z; θ)]}

where ℓ∆(z; θ) = infz′∈Z {∆dp(z, z′)− ℓ(z′; θ)} where d is the metric used to define the type-p
Wasserstein distance. Then notice that

|LWp (θ; ε)− LWp
n (θ; ε)| =

∣∣∣∣∣ sup
P∈Bε(P◦;Wp)

Ez∼P [ℓ(z; θ)]− sup
P∈Bε(P◦

n;Wp)

Ez∼P [ℓ(z; θ)]

∣∣∣∣∣
=

∣∣∣∣ inf∆≥0
{δεp − Ez∼P◦ [ℓ∆(z; θ)]} − inf

∆≥0

{
δεp − Ez∼P◦

n
[ℓ∆(z; θ)]

}∣∣∣∣
≤ sup

∆≥0

∣∣Ez∼P◦
n
[ℓ∆(z; θ)]− Ez∼P◦ [ℓ∆(z; θ)]

∣∣
where the first equality holds from strong duality and the last inequality holds from infx f(x) −
infx g(x) ≤ supx |f(x) − g(x)|. From Lemma 12, we showed that ℓ(z; θ) ∈ [0,Kl]. Now notice
that

l∆(z; θ) = inf
z′∈Z

{∆dp(z, z′)− ℓ(z′; θ)} ≤ inf
z′∈Z

{∆dp(z, z′)} = 0

ℓ∆(z; θ) = inf
z′∈Z

{∆dp(z, z′)− ℓ(z′; θ)} ≥ inf
z′∈Z

{∆dp(z, z′)−Kℓ} ≥ −Kℓ

Thus, ℓ∆ ∈ [−Kℓ, 0]. Since ℓδ is bounded and z i.i.d∼ P◦
n, we have by By Hoeffding’s inequality (by

Lemma 11)

P
(∣∣Ez∼P◦

n
[ℓ∆(z; θ)]− Ez∼P◦ [ℓ∆(z; θ)]

∣∣ ≥ ϵ) ≤ 2 exp

(
−2nϵ2

K2
ℓ

)

SinceKℓ does not depend on ∆, this bound is uniform and thus does not require any uniform covering
argument. By picking δ to be the right hand side, we find that with probability atleast 1− δ

|LWp (θ; ε)− LWp
n (θ; ε)| ≤ Kℓ

√
log(2/δ)

2n
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Now we have that

LWp
(
θWp ; ε

)
− LWp

(
θ̂Wp
n ; ε

)
= LWp

(
θWp ; ε

)
− LWp

n

(
θWp ; ε

)
+ LWp

n

(
θWp ; ε

)
− LWp

n

(
θ̂Wp
n ; ε

)
+ LWp

n

(
θ̂Wp
n ; ε

)
− LWp

(
θ̂Wp
n ; ε

)
≤
∣∣LWp

(
θWp ; ε

)
− LWp

n

(
θWp ; ε

)∣∣+ ∣∣∣LWp
n

(
θ̂Wp
n ; ε

)
− LWp

(
θ̂Wp
n ; ε

)∣∣∣
≤ Kℓ

√
2 log(2/δ)

n

where the first inequality holds from the fact that θ̂Wp
n ∈ argminθ∈Θ L

Wp
n (θ; ε). Now from Lemma

6 and Lemma 19, we have that

λ

η
∥θWp − θ̂Wp

n ∥2 ≤ LWp
(
θWp ; ε

)
− LWp

(
θ̂Wp
n ; ε

)
Thus with probability atleast 1− δ, we conclude that

∥θWp − θ̂Wp
n ∥2 ≤

1

λ
K2

g

√
2 log(2/δ)

n

D Proof of "Slow Rate" KL-DRO-REBEL

Before we prove the necessary results to get the "slow rate" for KL-DRO-REBEL, we need to make
an assumption on the loss functions ℓ(·; θ), θ ∈ Θ. Note that this assumption is only used in proving
the dual reformulation of the KL-DRO-REBEL objective.

Assumption 3. We assume that ℓ(z; θ) ≤ L for all θ ∈ Θ. That is, the loss function is upper
bounded by L. In addition, we also assume that Θ permits a uniform upper bound on λθ. That is, we
assume that

sup
θ∈Θ

λθ < λ̄.

We state the following dual reformulation result:
Lemma 16 (Dual reformulation of KL-DRO-REBEL). Let ℓ(z; θ) be the REBEL loss. The KL-DRO-
REBEL loss function has the following dual reformulation:

LKL (θ; ε) = sup
P∈Bε(P◦;KL)

Ez∼P [ℓ(z; θ)] = inf
λ∈[λ,λ̄]

{
λε+ λ log

(
Ez∼P◦

[
exp

(
ℓ(z; θ)

λ

)])}
,

where 0 < λ < λ̄ <∞ are constants.

We will now establish strong convexity of LKL (θ; ε) = supP∈Bε(P◦;KL) Ez∼P [ℓ(z; θ)]. This proof
will essentially be the same as Lemma 19
Lemma 17 (Strong convexity of LKL). Let l(z; θ) be the REBEL loss function. Then LKL (θ; ε) =
supP∈Bε(P◦;KL) Ez∼P [ℓ(z; θ)] is 2λ/η-strongly convex with respect to Euclidean norm || · ||2 where
λ is the regularity parameter from Assumption 3.

Proof of Lemma 19. In Lemma 14, we proved strong convexity of h. By Lemma 5, for θ, θ′ ∈ Θ and
α ∈ [0, 1], this is equivalent to

h(αθ + (1− α)θ′;P) ≤ αh(θ;P) + (1− α)h(θ′;P)− µ

2
α(1− α)||θ − θ′||2ΣP

Taking the supremum over P preserves the convex combination and the negative quadratic term so
we get
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LKL (αθ + (1− α)θ′; ε) = sup
P∈Bε(P◦;KL)

h(αθ + (1− α)θ′;P)

≤ sup
P∈Bε(P◦;KL)

[
αh(θ;P) + (1− α)h(θ′;P)− µ

2
α(1− α)||θ − θ′||2ΣP

]
≤ αLKL (θ; ε) + (1− α)LKL (θ′; ε)− µ

2
α(1− α) inf

P∈Bε(P◦;KL)
||θ − θ′||2ΣP

≤ αLKL (θ; ε) + (1− α)LKL (θ′; ε)− µ

2
α(1− α) inf

P∈Bε(P◦;KL)
λmin (ΣP) ||θ − θ′||22

≤ αLKL (θ; ε) + (1− α)LKL (θ′; ε)− µλ

2
α(1− α)||θ − θ′||22

where the second inequality holds from supx (f(x) + g(x)) ≤ supx f(x) + supx g(x), the third
inequality holds by the fact that ΣP ⪰ λmin (ΣP) I , and the last inequality holds from Assumption 3.
Thus we conclude that LKL is µλ-strongly convex in the || · ||2 norm.

Proof of Theorem 2. By the strong duality result for KL-DRO 16, we have for fixed θ

LKL (θ; ε) = sup
P∈Bε(P◦;KL)

Ez∼P [ℓ(z; θ)] = inf
λ∈[λ,λ̄]

{λε+ λ log (Ez∼P◦ [j(z, λ; θ)])} ,

where j(z, λ; θ) = exp
(

l(z;θ)
λ

)
. Then we have

|LKL (θ; ε)− LKL
n (θ; ε)| =

∣∣∣∣∣ sup
P∈Bε(P◦;KL)

Ez∼P [ℓ(z; θ)]− sup
P∈Bε(P◦

n;KL)

Ez∼P [ℓ(z; θ)]

∣∣∣∣∣
=

∣∣∣∣ inf
λ∈[λ,λ̄]

{λε+ λ log (Ez∼P◦ [j(z, λ; θ)])} − inf
λ∈[λ,λ̄]

{
λε+ λ log

(
Ez∼P◦

n
[j(z, λ; θ)]

)}∣∣∣∣
≤ sup

λ∈[λ,λ̄]

∣∣λ log (Ez∼P◦
n
[j(z, λ; θ)]

)
− λ log (Ez∼P◦ [j(z, λ; θ)])

∣∣
= sup

λ∈[λ,λ̄]

λ

∣∣∣∣log(Ez∼P◦
n
[j(z, λ; θ)]

Ez∼P◦ [j(z, λ; θ)]

)∣∣∣∣
= sup

λ∈[λ,λ̄]

λ

∣∣∣∣log(Ez∼P◦
n
[j(z, λ; θ)]− Ez∼P◦ [j(z, λ; θ)]

Ez∼P◦ [j(z, λ; θ)]
+ 1

)∣∣∣∣
≤ sup

λ∈[λ,λ̄]

λ

∣∣∣∣Ez∼P◦
n
[j(z, λ; θ)]− Ez∼P◦ [j(z, λ; θ)]

Ez∼P◦ [j(z, λ; θ)]

∣∣∣∣
≤ λ̄ sup

λ∈[λ,λ̄]

∣∣Ez∼P◦
n
[j(z, λ; θ)]− Ez∼P◦ [j(z, λ; θ)]

∣∣
where the first equality holds from strong duality, the first inequality holds from infx f(x) −
infx g(x) ≤ supx |f(x)− g(x)|, the seecond inequality holds from | log(1 + x)| ≤ |x| ∀x ≥ 0, and
the last inequality holds from l(z; θ) ≥ 0. By Hoeffding’s inequality (by Lemma 11)

P
(∣∣Ez∼P◦

n
[j(z, λ; θ)]− Ez∼P◦ [j(z, λ; θ)]

∣∣ ≥ ϵ) ≤ 2 exp

(
− 2nϵ2

exp
(
L/λ̄

))
Again since L and λ̄ are independent of λ, we do not need a uniform covering argument over λ.
Picking δ to be the right side, we find that with probability atleast 1− δ

|LKL (θ; ε)− LKL
n (θ; ε)| ≤ λ̄

√
exp

(
L/λ̄

)
log (2/δ)

2n
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Now we have that

LKL
(
θKL; ε

)
− LKL

(
θ̂KL
n ; ε

)
= LKL

(
θKL; ε

)
− LKL

n

(
θKL; ε

)
+ LKL

n

(
θKL; ε

)
− LKL

n

(
θ̂KL
n ; ε

)
+ LKL

n

(
θ̂KL
n ; ε

)
− LKL

(
θ̂KL
n ; ε

)
≤
∣∣LKL

(
θKL; ε

)
− LKL

n

(
θKL; ε

)∣∣+ ∣∣∣LKL
n

(
θ̂KL
n ; ε

)
− LKL

(
θ̂KL
n ; ε

)∣∣∣
≤ λ̄

√
2 exp

(
L/λ̄

)
log (2/δ)

n

where the first inequality holds from the fact that θ̂Wp
n ∈ argminθ∈Θ L

Wp
n (θ; ε). Now from Lemma

6 and Lemma 16, we have that

λ

η
∥θKL − θ̂KL

n ∥2 ≤
∣∣∣LKL

(
θKL; ε

)
− LKL

(
θ̂KL
n ; ε

)∣∣∣
Thus with probability atleast 1− δ, we conclude that

∥θKL − θ̂KL
n ∥2 ≤

η

λ

√
2λ̄2 exp

(
L/λ̄

)
log (2/δ)

n

E Proof of "Slow Rate" χ2-DRO-REBEL

We first state the following dual reformulation for χ2-DRO

Lemma 18 (Dual reformulation of χ2-DRO-REBEL). Let ℓ(z; θ) be the REBEL loss. The χ2-DRO-
REBEL objective admits the dual form

Lχ2(
θ; ε
)
= sup

P∈Bε

(
P◦;χ2

)Ez∼P
[
ℓ(z; θ)

]
= inf

λ∈[λ,λ̄]

{
λ ε + Ez∼P◦

[
ℓ(z; θ)

]
− 2λ +

1

4λ
Ez∼P◦

[(
ℓ(z; θ)− EP◦ [ ℓ(z; θ) ] + 2λ

)2]}
where 0 < λ < λ̄ < ∞ are chosen so that the infimum is attained. Equivalently, defining µ =
EP◦ [ℓ(z; θ)] and σ2 = VarP◦(ℓ(z; θ)),

Lχ2(
θ; ε
)
= µ + inf

λ∈[λ,λ̄]

{
(ε− 1)λ +

σ2

4λ

}
.

We again will prove strong convexity for χ2

Lemma 19 (Strong convexity of Lχ2

). Let l(z; θ) be the REBEL loss function. Then Lχ2

(θ; ε) =
supP∈Bε(P◦;χ2) Ez∼P [ℓ(z; θ)] is 2λ/η-strongly convex with respect to Euclidean norm || · ||2 where λ
is the regularity parameter from Assumption 3.

Proof of Lemma 19. In Lemma 14, we proved strong convexity of h. By Lemma 5, for θ, θ′ ∈ Θ and
α ∈ [0, 1], this is equivalent to

h(αθ + (1− α)θ′;P) ≤ αh(θ;P) + (1− α)h(θ′;P)− µ

2
α(1− α)||θ − θ′||2ΣP

Taking the supremum over P preserves the convex combination and the negative quadratic term so
we get

22



Lχ2

(αθ + (1− α)θ′; ε) = sup
P∈Bε(P◦;χ2)

h(αθ + (1− α)θ′;P)

≤ sup
P∈Bε(P◦;χ2)

[
αh(θ;P) + (1− α)h(θ′;P)− µ

2
α(1− α)||θ − θ′||2ΣP

]
≤ αLχ2

(θ; ε) + (1− α)Lχ2

(θ′; ε)− µ

2
α(1− α) inf

P∈Bε(P◦;χ2)
||θ − θ′||2ΣP

≤ αLχ2

(θ; ε) + (1− α)Lχ2

(θ′; ε)− µ

2
α(1− α) inf

P∈Bε(P◦;χ2)
λmin (ΣP) ||θ − θ′||22

≤ αLχ2

(θ; ε) + (1− α)Lχ2

(θ′; ε)− µλ

2
α(1− α)||θ − θ′||22

where the second inequality holds from supx (f(x) + g(x)) ≤ supx f(x) + supx g(x), the third
inequality holds by the fact that ΣP ⪰ λmin (ΣP) I , and the last inequality holds from Assumption 3.
Thus we conclude that Lχ2

is µλ-strongly convex in the || · ||2 norm.

We now prove the "slow rate" estimation error of χ2-DRO-REBEL

Proof of Theorem 3. Let θχ
2 ∈ argminθ Lχ2

(θ; ε) and θ̂χ
2

n ∈ argminθ Lχ2

n (θ; ε). By the dual
reformulation (Lemma 18), for any fixed θ

Lχ2

(θ; ε) = µ+ inf
λ∈[λ,λ̄]

{
(ε− 1)λ+

σ2

4λ

}
,

and similarly

Lχ2

n (θ; ε) = µn + inf
λ∈[λ,λ̄]

{
(ε− 1)λ+

σ2
n

4λ

}
,

where µ = EP◦ [ ℓ(z; θ) ], µn = EP◦
n
[ ℓ(z; θ) ], σ2 = VarP◦(ℓ(z; θ)), and σ2

n = VarP◦
n
(ℓ(z; θ)).

Using the dual reformulation we have that∣∣Lχ2

(θ; ε)− Lχ2

n (θ; ε)
∣∣ =

∣∣µ− µn

∣∣ +
∣∣inf

λ
g(λ)− inf

λ
gn(λ)

∣∣
≤
∣∣µ− µn

∣∣ + sup
λ∈[λ,λ̄]

∣∣g(λ)− gn(λ)∣∣,
where g(λ) = (ε − 1)λ + σ2

4λ and gn(λ) = (ε − 1)λ +
σ2
n

4λ . The second second inequality in the
argument above follows by the triangle inequality . From Lemma 12, we have that ℓ(z; θ) ∈ [0,Kℓ].
Then by Hoeffding’s inequality (Lemma 11), we have that

Pr
(
|µ− µn| ≥ δ

)
≤ 2 exp

(
− 2nδ2

K2
ℓ

)
,

and
Pr
(
|σ2 − σ2

n| ≥ δ′
)
≤ 2 exp

(
− 2nδ′2

K4
ℓ

)
.

Thus with probability at least 1− 2 exp(−2nα2/K4
ℓ ), choosing δ, δ′ = K2

ℓ

√
log(2/δ)

2n , we get

|µ− µn| ≤ Kℓ

√
log(2/δ)

2n ,

and
|σ2 − σ2

n| ≤ K2
ℓ

√
log(2/δ)

2n .

Therefore

sup
λ
|g(λ)− gn(λ)| ≤

|σ2 − σ2
n|

4 λ̄
≤ K2

ℓ

4 λ̄

√
log(2/δ)

2n
,

and overall ∣∣Lχ2

(θ; ε)− Lχ2

n (θ; ε)
∣∣ ≤ Kℓ

(
1 + Kℓ

4λ̄

)√ log(2/δ)

2n
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Now set θ = θχ
2

and θ = θ̂χ
2

n in turn, and use the “three-term” decomposition (as in the Wasserstein
and KL proof) to conclude

Lχ2

(θχ
2

; ε)− Lχ2

(θ̂χ
2

n ; ε) ≤ 2
∣∣Lχ2

(θ)− Lχ2

n (θ)
∣∣ ≤ Kℓ

(
1 + Kℓ

4λ̄

)√2 log(2/δ)

n

Finally, by strong convexity of Lχ2

(cf. Lemma 6),

λ
η

∥∥θχ2

− θ̂χ
2

n

∥∥2 ≤ Lχ2

(θχ
2

; ε)− Lχ2

(θ̂χ
2

n ; ε),

so with probability at least 1− δ,

∥θχ
2

− θ̂χ
2

n ∥2 ≤
K2

g

λ

(
1 +

K2
g

4λ̄η

)√
2 log(2/δ)

n

as claimed.

F Proof of "Master Theorem" for Parametric n−1/2 rates

Proof of Theorem 4. Let M(θ) = Ez∼P◦ [ℓ(z; θ)] and Mn(θ) = Ez∼P◦
n
[ℓ(z; θ)]. First notice that

we can do a loss decomposition as follows: for fixed θ ∈ Θ

∣∣LD (θ; εn)− LD
n (θ; εn)

∣∣ ≤ ∣∣LD (θ; εn)−M(θ)
∣∣+ |M(θ)−Mn(θ)|+

∣∣Mn(θ)− LD
n (θ; εn)

∣∣
≤ 2∆n + sup

∥θ−θ∗||2≤r

|M(θ)−Mn(θ)|

where the first inequality holds from triangle inequality and the second holds from the assumption
that LD(θ) − EP

[
ℓ(z; θ)

]
≤ ∆n. Now let us define the following function class

Fr = {fθ(z) = ℓ(z; θ)− ℓ(z; θ∗) | ∥θ − θ∗||2 ≤ r}

Then bounding sup∥θ−θ∗||2≤r |M(θ)−Mn(θ)| is equivalent to bounding supf∈Fr
|Pnf−Pf |where

Pnf − Pf corresponds to the empirical process M(θ)−Mn(θ). Now by Lemma 8 (Symmetriza-
tion) taking Φ = I and using the notation Rn(Fr) = Eσ

[
supf∈Fr

1
n

∑n
i=1 σif(zi)

]
called the

Rademacher complexity, we have

E

[
sup
f∈Fr

|Pnf − Pf |

]
≤ 2E [Rn(Fr)]

where the expectation is taken with respect to the data z in the expression above whereas in the
Rademacher complexity, we condition on the data z and take the expectation over σi

i.i.d∼ Unif{−1, 1}.
Assume that ℓ(z; θ) is Lg-Lipschitz in θ. Then by Theorem 5 (Contraction principle)

Rn(Fr) ≤ LgRn({θ : ∥θ − θ∗∥ ≤ r})

But the latter is a class of points in a Euclidean ball in Rd. A standard covering argument gives us

N(ϵ,Fr, L2(P )) ≤
(
3Lgr

ϵ

)d

Corollary 5 (Dudley’s entropy integral) then gives us

2E [Rn(Fr)] ≤
12√
n

∫ Lgr

0

√
logN(ϵ,Fr, L2(P ))dϵ ≤ CLgr

√
d

n

where C =
∫ 1

0

√
log(3/u)du <∞ is an absolute constant. Thus we have that

E

[
sup
f∈Fr

|Pnf − Pf |

]
≤ 2CLgr

√
d

n
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To upgrade the above expectation bound into a high-probability bound, one applies Bousquet’s
inequality (a one-sided Talagrand bound). First notice that since ℓ(z; θ) is Lg-Lipschitz in θ, we have
that

|fθ(z)| = |ℓ(z; θ)− ℓ(z; θ∗)| ≤ Lg∥θ − θ∗∥2 ≤ Lgr

Thus f2θ (z) ≤ L2
gr

2. Thus we have that Varz∼P (fθ(z)) ≤ L2
gr

2. Since each fθ ∈ Fr is uniformly
bounded by Kℓ by assumption and has bounded variance, then by applying Theorem 6 (Bousquet’s
inequality) to Rademacher averages of a class, we find that there exists constants c1, c2 > 0 such that
for any δ ∈ (0, 1), with probability atleast 1− δ

sup
f∈Fr

|Pnf − Pf | ≤ 2E [Rn(Fr)] + c1Lgr

√
log
(
1
δ

)
n

+ c2
Kℓ

n
log

(
1

δ

)
Plugging in the Dudley integral bound, we get

sup
f∈Fr

|Pnf − Pf | ≤ 2c0Lgr

√
d

n
+ c1Lgr

√
log
(
1
δ

)
n

+ c2
Kℓ

n
log

(
1

δ

)
with c0 = C. On the other hand, by α-strong convexity of LD(·; εn) around θ∗,

α

2
r2 ≤ LD(θ̂n)− LD(θ∗) ≤

[
LD(θ̂n)− LD

n (θ̂n)
]
+
[
LD
n (θ∗)− LD(θ∗)

]
.

Applying the above uniform deviation bound at θ = θ̂n and at θ = θ∗ yields

α

2
r2 ≤ 2∆n + 2c0Lg r

√
d

n
+ c1Lg r

√
log(1/δ)

n
+ c2

Kℓ

n
log
(1
δ

)
.

Rearrange into the quadratic form
α

2
r2 − P r −Q ≤ 0,

where

P = 2c0Lg

√
d

n
+ c1Lg

√
log(1/δ)

n
, Q = 2∆n + c2

Kℓ

n
log
(1
δ

)
.

Solving for r gives

r ≤ P +
√
P 2 + 2αQ

α
≤ 6c0Lg

α

√
d

n
+

c1Lg

α

√
log(1/δ)

n
+ 2

√
∆n

α
+

√
2 c2Kℓ

αn
log

1

δ
.

where the second inequality holds from
√
a+ b ≤

√
a+
√
b. Since ∆n = O(n−1) and log(1/δ)/n =

O(n−1), each term above is O(n−1/2). Abusing notation, taking r = min {r, 2B}, we conclude that

∥θ̂n − θ∗∥2 ≤ r ≤ O
(√

d
n +

√
ln(1/δ)

n +
√
∆n

)
= OP (n

−1/2),

as claimed.

For all proofs that follow, note that by the "Master Theorem" that we proved above, it suffices to
show for the metric we are dealing with, we have a dual "remainder" term as follows

LD(θ; εn) − EP◦
[
ℓ(z; θ)

]
≤ ∆n.

G Proof of "Fast Rate" Wasserstein-DRO-REBEL

Proof of Corollary 1. First recall the type-p Wasserstein distance. The type-p (p ∈ [1,∞)) Wasser-
stein distance between two distributions P,Q ∈M (Ξ) is defined as

Wp (P,Q) =

(
inf

π∈Π(P,Q)

∫
Rd×Rd

d(ξ, η)pπ(dξ, dη)

)1/p
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where π is a coupling between the marginal distributions ξ ∼ P and η ∼ Q and d is a pseudometric
defined on Z .

We note the following

Ez∼P [ℓ(z; θ)]− Ez∼P◦ [ℓ(z; θ)] =

∫
(ℓ(ξ; θ)− ℓ(η; θ))π(dξ, dη)

where π is the coupling between the marginal distributions ξ ∼ P and η ∼ P◦. This equality holds
just from the marginal property of a coupling. Now for a function ℓ(z; θ) that is Lz-Lipschitz, notice
the following

Ez∼P [ℓ(z; θ)]− Ez∼P◦ [ℓ(z; θ)] =

∫
(ℓ(ξ; θ)− ℓ(η; θ))π(dξ, dη)

≤ Lz

∫
d(ξ, η)π(dξ, dη)

≤ Lz

(∫
d(ξ, η)pπ(dξ, dη)

)1/p

where the first inequality holds from ℓ(z; θ) being Lipschitz and the last inequality holds from the
monotonicity of type-p Wasserstein Distance. In Lemma 13, we showed that ℓ(z; θ) is 4Kg/η-
Lipschitz in θ. Thus putting everything together we find

LWp(θ) − EP◦
[
ℓ(z; θ)

]
= sup

P∈Bεn (P◦;Wp)

(
Ez∼P [ℓ(z; θ)]− EP◦

[
ℓ(z; θ)

])
≤ 4Kg

η
sup

P∈Bεn (P◦;Wp)

(∫
d(ξ, η)pπ(dξ, dη)

)1/p

≤ 4Kg

η
εn

Taking εn ≍ n−1, we get ∆n = O(n−1).

H Proof of "Fast Rate" KL-DRO-REBEL

Proof of Corollary 2. First recall Lemma 9 (Gibbs variational principle characterization of the KL
divergence). For probability measures P,Q

DKL (P || Q) = sup
g:Z→R

{EP [g]− logEQ [eg]}

Now, for λ ≥ 0, take g(x) = λ (fθ − EQfθ) where fθ is parameterized by some θ ∈ Θ. Then since
an affine estimator will not necessarily achieve the supremum, we have that

DKL (P || Q) = sup
g:Z→R

{EP [g]− logEQ [eg]}

≥ sup
λ≥0

{
λ (EPfθ − EQfθ)− logEQ

[
eλ(fθ−EQfθ)

]}
Now suppose that fθ ∈ [0,Kℓ] a.s. Then, by Lemma 10 (Hoeffding’s Lemma), we know that
fθ ∼ SG

(
Kℓ

2

)
so we have that

logEQ

[
eλ(fθ−EQfθ)

]
≤ λ2K2

ℓ

8
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Thus we have

DKL (P || Q) ≥ sup
λ≥0

{
λ (EPfθ − EQfθ)− logEQ

[
eλ(fθ−EQfθ)

]}
≥ sup

λ≥0

{
λ (EPfθ − EQfθ)−

λ2K2
ℓ

8

}
Note that the objective is strictly concave in λ and so the supremum will be attained at a unique
maximizer. That maximizer is as follows:

λ∗ =
4 (EPfθ − EQfθ)

K2
ℓ

Plugging this in, we find that

DKL (P || Q) ≥ 2 (EPfθ − EQfθ)
2

K2
ℓ

Rearranging terms, we find

EPfθ − EQfθ ≤
1

2
Kℓ

√
DKL (P || Q)

Now take Q = P◦ and fθ = ℓ(z; θ). From Lemma 12, we showed that ℓ(z; θ) ∈ [0,Kℓ] a.s. Thus,

Ez∼P [ℓ(z; θ)]− Ez∼P◦ [ℓ(z; θ)] ≤ 1

2
Kl

√
DKL (P || P◦)

Putting everything together we get

LKL(θ) − EP◦
[
ℓ(z; θ)

]
= sup

P∈Bεn (P◦;KL)

(
Ez∼P [ℓ(z; θ)]− EP◦

[
ℓ(z; θ)

])
≤ 1

2
Kl sup

P∈Bεn (P◦;KL)

√
DKL (P || P◦)

≤ 1

2
Kl
√
εn

Taking εn ≍ n−2, we get ∆n = O(n−1)

I Proof of "Fast Rate" χ2-DRO-REBEL

Proof of Corollary 3. By Theorem 7 (Hammersley-Chapman-Robbins (HCR) lower bound), we
immediately have

Ez∼P [ℓ(z; θ)]− Ez∼P◦ [ℓ(z; θ)] ≤
√

Var (ℓ(z; θ))χ2 (P || P◦)

Since ℓ(z; θ) ∈ [0,Kℓ] a.s., we have Var (ℓ(z; θ)) ≤ K2
l . Thus we have

Lχ2

(θ) − EP◦
[
ℓ(z; θ)

]
= sup

P∈Bεn (P◦;χ2)

(
Ez∼P [ℓ(z; θ)]− EP◦

[
ℓ(z; θ)

])
≤ Kl sup

P∈Bεn (P◦;χ2)

√
χ2 (P || P◦)

≤ Kl
√
εn

Taking εn ≍ n−2, we get ∆n = O(n−1)
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